دوره 13، شماره 2 - ( 1-1402 )                   جلد 13 شماره 2 صفحات 154-143 | برگشت به فهرست نسخه ها

XML English Abstract Print


چکیده:   (7040 مشاهده)
Despite the advantages of the plastic limit analysis of structures, this robust method suffers from some drawbacks such as intense computational cost. Through two recent decades, metaheuristic algorithms have improved the performance of plastic limit analysis, especially in structural problems. Additionally, graph theoretical algorithms have decreased the computational time of the process impressively. However, the iterative procedure and its relative computational memory and time have remained a challenge, up to now. In this paper, a metaheuristic-based artificial neural network (ANN), which is categorized as a supervised machine learning technique, has been employed to determine the collapse load factors of two-dimensional frames in an absolutely fast manner. The numerical examples indicate that the proposed method's performance and accuracy are satisfactory.
 
متن کامل [PDF 815 kb]   (2481 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: Applications
دریافت: 1401/10/8 | پذیرش: 1401/10/21 | انتشار: 1401/10/21

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.