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ABSTRACT 
 

In present study, the effects of optimization on seismic energy spectra including input energy, 

damping energy and yielding hysteretic energy are parametrically discussed. To this end, 12 

generic steel moment-resisting frames having fundamental periods ranging from 0.3 to 3s are 

optimized by using uniform damage and deformation approaches subjected to a series of 40 non-

pule strong ground motions. In order to obtain the optimum distribution of structural properties, 

an iterative optimization procedure has been adopted. In this approach, the structural properties 

are modified so that inefficient material is gradually shifted from strong to weak areas of a 

structure. This process is continued until a state of uniform damage is achieved. Then, the 

maximum energy demand parameters are computed for different structures designed by 

optimum load pattern as well as code-based pattern, and the mean energy spectra, energy-based 

reduction factor and the dispersion of the results are compared and discussed. Results indicate 

that optimum seismic load pattern can significantly affect the energy demands spectra especially 

in inelastic range of response. In addition, using energy-based reduction factors of optimum 

structures in short-period and long-period regions will result in respectively overestimation and 

underestimation of the required input energy demands for code-based structures, reflecting the 

difference dose exists in reality between the conventional forced-based methodology and 

energy-based seismic design approach that can more realistically incorporate the frequency 

content and duration of earthquake ground motions. 
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1. INTRODUCTION 
 

When building structures are properly designed against earthquakes, the property damages 

and related fatalities are substantially reduced. Currently, seismic design procedures 

stipulated in earthquake design codes such as ASCE-7-16 [1] and IBC-2015 [2]; Erocode-8 

[3] and Iranian Code of Practice, Standard No. 2800 [4] are widely used by practicing 

engineers to design structures that can resist earthquake forces with an acceptable damage, 

which is referred to as damage levels in performance-based design codes such as FEMA 356 

[5]. Forced-based and displacement-based design approaches are two of the widely used 

conventional performance-based design procedures in the world. The fundamental concept 

of these procedures are based on nonlinear static (pushover) methods. In the force-based 

seismic design (FBSD) method, a design lateral force for a given structure is computed 

based on an elastic design acceleration response spectrum, which is called the design base 

shear. To consider the inelastic behavior, the design shear force of a given structural system 

obtained from the elastic acceleration response spectrum is reduced by a strength-reduction 

factor or so-called response modification factor. The structure is then designed for the 

reduced shear strength, and the displacement or inter-story drift can be controlled so that the 

code-compliant limits are coped with. However, many limitations and drawbacks have been 

reported by researchers on the FBSD procedure. In one of the detailed investigations, Smith 

and Tso [6] through studying on a large family of reinforced-concrete members such as 

flexural walls, piers and ductile moment-resisting fames asserted that force-based seismic 

design procedure is inconsistent. They concluded that the assumption of the independency of 

the shear strength and shear stiffness of a lateral load resisting system is essentially 

inconsistent since they are indeed related and proportional. Instead of using design base 

shear as in the case for FBSD, the displacement-based seismic design (DBSD) method, in 

general considered to be a better substitute for the FBSD approach, takes inter-story drift or 

displacement in the design process. Consequently, the key task in a DBSD method is to 

estimate the maximum displacement demand in a given structure with rational accuracy and 

simplicity as a function of its local mechanical properties including element deformation and 

strain limits. One of the currently available DBSD methods is the Displacement-Based 

Coefficient Method (DBCM) provided by FEMA 440 [7]. In this method the linear elastic 

response of an equivalent SDOF (E-SDF) system is modified by multiplying it by a series of 

coefficients to compute a target (global) displacement. This approach utilizes an idealized 

pushover curve corresponding to a given damping ratio of base shear strength with respect to 

roof displacement developed for a real MDOF structure. The accuracy of the DBSD 

procedure is highly dependent on how closely the equivalent SDOF system and its MDOF 

counterpart are related through the idealized pushover curve. Recently, researchers have 

identified some drawbacks in the use of roof displacement-based pushover curve. As an 

instance, Hernandez-Montes et al. [8] pointed out that the use of roof displacement in 

producing the capacity curve would be confusing since the capacity curve occasionally tends 

to exhibit the structure as a source of energy rather than absorbing energy. Neither the FBSD 

procedure, using base shear strength as a design parameter, nor the DBD method, using 

displacement as a design parameter, can directly account for the cumulative damage 

influence that result from several inelastic cycles of the earthquake ground motion due to 
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strength and stiffness deterioration of the structural hysteretic behavior. As a result, the 

effect of earthquake excitation on structural systems should be interpreted not only just as a 

force or displacement quantity, but also as a product of both aforementioned parameters 

which can be described in terms of energy. This is the underlying concept for the inception 

of the energy-based seismic design (EBSD) approach, which is suggested by many 

researchers to be considered as the next generation of seismic design procedures.  

It is believed that a more rational seismic design approach is to express the dynamic input 

effect through energy response spectra. Interpreting the effect of earthquakes in terms of 

energy is gaining extensive attention [9-23]. This approach has three major advantages: (i) 

the input effect in terms of energy and the structural resistance in terms of energy dissipation 

capacity are basically uncoupled, (ii) except in the short period range, the input energy 

introduced by a given ground motion in a structure is a stable quantity, governed primarily 

by the fundamental natural period and the mass, and scarcely by other structural properties 

such as resistance, damping and hysteretic behavior, and (iii) the consideration of the 

cumulative damage fits well with this formulation and can be directly addressed. In the 

energy-based methods the design criterion is constituted by the comparison between the 

energy absorption capacity of the structure (i.e. its seismic resistance) and the input energy 

(i.e. the effect of the ground motion). It is then necessary to establish the input energy 

spectrum corresponding to the expected earthquake, i.e. design input energy spectrum. On 

the other hand, it is also well known that structural characteristics in terms of stiffness and 

strength distributions have a key role in seismic demands of structures. In a comprehensive 

parametric study, Ganjavi and Hao [24] through intensive parametric analyses of 21600 

linear and nonlinear MDOF systems and considering five different shear strength and 

stiffness distribution patterns subjected to a group of earthquakes recorded on alluvium and 

soft soils, the effect of structural lateral stiffness and strength distribution on strength 

demand and ductility reduction factor spectra of MDOF fixed-base and soil-structure 

systems were parametrically investigated. Results of this study showed that depending on 

the level of inelasticity, soil flexibility and number of degrees-of-freedoms (DOFs), 

structural characteristics distribution can significantly affect the strength demand and 

ductility reduction factor of MDOF systems. In this regard, several studies have been 

conducted by researchers to evaluate and improve the code-specified design lateral load 

patterns of fixed-base systems based on the inelastic behavior of the structures [25-29]. 

More recently, an optimization procedure have been performed for soil-structure system 

taken into consideration of superstructure elastic and inelastic behaviors [30-31]. However, 

the effect of optimum seismic design and load patterns on seismic energy demands of 

building structures have not been well addressed yet. It is in this area that the present study 

attempts to make a contribution. In this study, steel moment-resisting frames are optimized 

by using uniform damage and deformation approaches subjected to a series of strong ground 

motions. Then, the maximum energy demand parameters are computed for different 

structures designed by optimum load pattern as well as code-based pattern. The effect of 

optimization on seismic energy spectra including input energy, damping energy and 

hysteretic energy are parametrically discussed. 
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2. SIMPLIFIED GENERIC MOMENT-RESISTING FRAME PROTOTYPES 

AND EARTHQUAKE EXCITATIONS 
 

During the past twenty years, different types of simplified generic frames have been 

introduced and developed by many researchers for evaluating seismic response and behavior 

of steel and concrete moment-resisting frames. In geometry viewpoint, generic frames used 

in the past can be divided into two main categories: (a) fishbone-shape generic frames (b) 

single-bay generic frames, and (2). “Fishbone” shape generic frames are a type of generic 

frame utilized by Ogawa et. al. [32], Luco et. al., [33], Nakashima et. al [34], and Kahloo 

and Khosravi [35]. In this simple model, a multi-bay frame can be modeled as a cantilever 

beam with two rotational springs at each floor level connected to roller supports on each side 

of the cantilever. One of the main assumptions in the development of this type of generic 

frames is existing the identical rotations of joints at the same floor. As with the second type 

of generic frame, many researches such as those conducted by Medina and Krawinkler [36], 

Esteva and Ruiz [37] and Park [25] showed that the response of a multi-bay building can be 

simulated adequately by a single-bay frame. This approach has attracted researchers for 

seismic performance assessment since it represents a less computational effort for 

performing repeated nonlinear dynamic time history analyses. Results obtained by the 

researchers demonstrated that single-bay generic frame models are adequate to represent the 

global dynamic behavior of more complex regular multi-story frames exposed to earthquake 

excitations [38-39]. In this study the single-bay steel frame reprehensive of steel moment 

resisting frame structures are utilized for parametric study. A schematic shape of the generic 

frame is shown in Fig. 1. The generic frame prototypes used in this study are 12 single-bay, 

steel frames with the number of stories ranging from three to twenty. The fundamental 

periods are 0.3, 0.4, 0.6, 0.8, 1.0, 1.2, 1.5, 1.8, 2.1, 2.4, 2.7 and 3.0 s. The main properties of 

the generic frames used in this paper are as follows: 

(1) Models are two-dimensional steel moment-resisting frames. The distribution of story 

mass is uniform over the floor levels. For all generic frames, story height is constant and 

equal to 3.6 m. Moreover, the beam span is equal to 7.2 m.  

(2) The effect of finite joint regions is not taken into account, meaning the dimensions of 

centerline are considered for column and beam members.  

(3) The generic frames are designed based on the strong column-weak-beam (SCWB) 

concept. In other words, the plastic hinge is confined only at the beam ends and at the 

bottom of the first story columns as shown in Fig 1.  

(4) When the frame is undergone to a given lateral load pattern, the same value of over-

strength is supposed at all stories, which means that beams and columns strengths are 

adjusted such that yielding occurs simultaneously at all plastic hinge locations. This 

provides the computation of inter-story ductility ratio which in its turn is obtained from 

yield story drift.  

(5) The first mode shape for all the models is a straight-line, which regards to the fact that 

each story stiffness is adjusted so that as the frame is under a triangular load pattern, a 

uniform height-wise distribution of story drifts over the height is occurred. In this 

manner, the relative height-wise distribution of member stiffness along the height is also 

achieved. 
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(6)  The P-Delta for the whole structure which is called as global effect is considered through 

quantifying the elastic first story stability coefficient as proposed by Medina and 

Krawinkler (2005), whereas member P-Delta is not taken into account for.  

(7) In time history dynamic analysis, structural damping is modelled based on Rayleigh 

damping model with 5% of critical damping assigned to the first mode as well as to the 

mode where the cumulative mass participation is at least 95%.  

(8) The moment-rotation hysteretic behavior is modeled by using rotational springs with 

Modified-Clough stiffness degrading model with 2% strain hardening (Fig. 2). 

(9)  In addition, Modified Rayleigh-type damping model for proper modeling of structural 

damping in inelastic plane structural systems proposed by Zareian and Medina [40] was 

utilized to have more reliable results in time history analysis.  

 

 
Figure 1. Schematic generic steel moment-resisting frame used in this study 

 

 
Figure 2. Modified clough stiffness degrading model 

 

For nonlinear dynamic analyses a set of 40 ground motions located on alluvium soil site 

deposits was compiled from six strong earthquakes recorded on soil type III on Iranian 

seismic code [4]. They were selected from strong ground motion database of the Pacific 

Earthquake Engineering Center (PEER). These earthquake ground motions have been 

selected based on the given assumptions including: (a) They exclude the near-fault ground 

motion characteristic such as pulse type and forward directivity effects. The effect of near-
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fault ground motions on structures is more pronounced compared to that of far-fault ones. 

The distinct effects of near-fault earthquake ground motions require to be assessed 

separately during the design process, and the result of a study based on a combination of 

near-fault and far-fault ground motion records is likely to give misleading conclusions. 

Consequently, this study has excluded near-fault ground motion records in the selected 

ground motion ensemble and is primarily focused on far-fault ground motion effects. (b) 

They are not located on soft soil profiles; hence the effect soil-structure interaction has not 

been considered in this study (c) They have no long duration characteristics. (d) The selected 

earthquake ground motions have moment magnitude equal or larger than 6.5 covering 

ground motions referred to as strong to major earthquakes, and closest distance to the fault 

rupture is less than 40 km. (e) These ground motions are recorded on soils that correspond to 

IBC-2015 site class D, which is approximately similar to the soil type III of the Iranian 

seismic code of practice, Standard No. 2800 [4]. (f) These ground motions have been scaled 

based on ASCE7-16 [1] to be consistent with those that dominate the 10 percent probability 

of exceedance of a given ground motion intensity measure in 50 years. The main properties 

of ground motion are provided in Table 1. 
 

Table 1: Ground motions used in this study 

Event Year Station Mw 
R 

(km) 

PGA 

(g) 

PGV 

(cm/s) 

Da 

(s) 

L b 

(s) 

Imperial Valley 1979 Calipatria Fire Station 6.5 23.8 0.078 13.3 23.3 39.5 

Imperial Valley 1979 Chihuahua 
 

28.7 0.270 24.9 20.1 40.0 

Imperial Valley 1979 Compuertas 
 

32.6 0.186 13.9 21.7 36.0 

Imperial Valley 1979 El Centro Array #1 
 

15.5 0.139 16.0 8.9 39.5 

Imperial Valley 1979 El Centro Array #12 
 

18.2 0.116 21.8 19.4 39.0 

Imperial Valley 1979 El Centro Array #13 
 

21.9 0.139 13.0 21.2 39.5 

Imperial Valley 1979 Niland Fire Station 
 

35.9 0.109 11.9 21.7 40.0 

Imperial Valley 1979 Plaster City 
 

31.7 0.057 5.4 10.7 18.7 

Imperial Valley 1979 Cucapah 
 

23.6 0.309 36.3 15.7 40.0 

Imperial Valley 1979 Westmorland Fire Station 
 

15.1 0.110 21.9 25.2 40.0 

Loma Prieta 1989 Agnews State Hospital 6.9 28.2 0.172 26.0 18.4 40.0 

Loma Prieta 1989 Capitola 
 

14.5 0.443 29.3 13.2 40.0 

Loma Prieta 1989 Gilroy Array #3 
 

14.4 0.367 44.7 11.4 39.9 

Loma Prieta 1989 Gilroy Array #4 
 

16.1 0.212 37.9 14.8 39.9 

Loma Prieta 1989 Gilroy Array #7 
 

24.2 0.226 16.4 11.5 39.9 

Loma Prieta 1989 Hollister City Hall 
 

28.2 0.247 38.5 17.4 39.1 

Loma Prieta 1989 
Hollister Differential 

Array  
25.8 0.279 35.6 13.2 39.6 

Loma Prieta 1989 Halls Valley 
 

31.6 0.134 15.4 16.2 39.9 

Loma Prieta 1989 Salinas—John and Work 
 

32.6 0.112 15.7 20.3 39.9 

Loma Prieta 1989 Palo Alto—SLAC Lab. 
 

36.3 0.194 37.5 12.5 39.6 

Loma Prieta 1989 Sunnyvale—Colton Ave. 
 

28.8 0.207 37.3 21.2 39.2 

Northridge 1994 LA—Centinela St. 6.7 30.9 0.322 22.9 12.4 30.0 

Northridge 1994 
Canoga Park—Topanga 

Can.  
15.8 0.420 60.8 10.4 25.0 
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Northridge 1994 LA—N Faring Rd. 
 

23.9 0.273 15.8 8.8 30.0 

Northridge 1994 LA—Fletcher Dr. 
 

29.5 0.240 26.2 11.8 30.0 

Northridge 1994 Glendale—Las Palmas 
 

25.4 0.206 7.4 11.5 30.0 

Northridge 1994 LA—Hollywood Stor FF 
 

25.5 0.231 18.3 12.0 40.0 

Northridge 1994 Lake Hughes #1 
 

36.3 0.087 9.4 13.9 32.0 

Northridge 1994 Leona Valley #2 
 

37.7 0.063 7.2 12.5 32.0 

Northridge 1994 Leona Valley #6 
 

38.5 0.178 14.4 10.4 32.0 

Northridge 1994 La Crescenta—New York 
 

22.3 0.159 11.3 11.0 30.0 

Northridge 1994 LA—Pico and Sentous 
 

32.7 0.186 14.3 14.8 40.0 

Northridge 1994 
Northridge—17645 

Saticoy St.  
13.3 0.368 28.9 15.7 30.0 

Northridge 1994 LA—Saturn St. 
 

30.0 0.474 34.6 11.6 31.6 

Northridge 1994 LA—E.Vernon Ave. 
 

39.3 0.153 10.1 15.9 30.0 

San Fernando 1971 LA—Hollywood Stor Lot 6.6 21.2 0.174 14.9 11.2 28.0 

Superstition Hills 1987 Brawley 6.7 18.2 0.156 13.9 13.5 22.1 

Superstition Hills 1987 El Centro Imp. Co. Cent 
 

13.9 0.358 46.4 16.1 40.0 

Superstition Hills 1987 Plaster City 
 

21.0 0.186 20.6 11.3 22.2 

Superstition Hills 1987 Westmorland Fire Station 
 

13.3 0.172 23.5 19.6 40.0 

aDuration of strong motion (defined as the time it takes for the cumulative energy of the ground motion 

record to grow from 5 to 95% of its value at the end of the history). 
bLength of record 

 

 

3. METHODOLOGY FOR COMPUTING THE SEISMIC ENERGY 

DEMANDS OF STRUCTURES BASED ON OPTIMUM DISPLACEMENT-

BASED METHOD 
 

As indicated in the literature, seismic load pattern can have significant effect on seismic 

response of the structures. To investigate this effect from energy point of view, a 

methodology for computing the energy demand spectra of optimized steel moment-frame 

prototypes is proposed. Optimum-designed steel moment frame models are regarded as the 

structure in which the story structural damage (i.e., deformation or ductility demand) are 

distributed uniformly along the height of a the frame under a given earthquake excitation. 

The required relative shear strength pattern corresponding to this performance target is 

called optimum lateral load pattern which can be compared with the code-compliant design 

lateral load patterns [2, 4]. In such a case, based on the step-by-step procedure presented in 

this study, one can easily compare the required elastic and inelastic energy demands spectra 

of the code-based and optimum designed frame prototypes when subjected to a family of 

realistic earthquake ground motion excitations. In this regard, it is essential to select proper 

engineering response or demand parameters to determine the optimum distribution of the 

structural damage over the height. Among them, inter-story and global ductility ratios, 

maximum inter-story drift ratio, the number of cycles of yielding, cyclic story ductility and 

also a combination of above-mentioned parameters are those of such engineering demand 

parameters that are commonly used by researches to compute seismic damage imparted to a 

structure [26, 36, 41-42]. Two of the aforementioned parameters widely used by many 
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researchers to quantify the structural damage for non-deteriorating structural systems are the 

maximum inter-story drift ratio defined as the maximum relative displacement between two 

consecutive story levels normalized by the story height. In addition, the inter-story ductility 

ratio (μi ) in i-th story is defined as the difference between the maximum inter-story drift 

angle  and the inter-story yield drift angle  normalized by the inter-story yield 

drift angle. Generally, a steel structure with ductile structural elements with no strength 

deterioration can withstand forces and carry larger loading without losing its carrying 

capacity entirely. In performance based-seismic design, the maximum story drift and 

ductility ratios are two of the most appropriate parameters to determine the structural 

damage. It is believed that they have several advantages such as (i) they are very simple 

parameters to be computed by researchers; (ii) they are perceptible for all structural 

engineers; and (iii) many experimental studies have been carried on these parameters. 

Therefore, they can be considered as sufficient earthquake engineering demand parameters 

to evaluate the structural damage imparted to the building structures during an earthquake 

event. in this study, these parameters are selected as suitable indicators of structural damage.  

Although, different optimization algorithms have been proposed by researches such as those 

recently developed by Kaveh [43], based on the parameters used in this study the following 

practical step-by-step iteration process is proposed for the generic steel frame models 

introduced in previous sections under a given earthquake ground motion to achieve 

optimum-designed energy demands spectra: 

1. Select a frame prototype with the target fundamental period (T1) and specific number of 

stories. Calculate and assign member stiffness based on the first mode shape of shear-

type structure through pushover analysis. An iteration process should be conducted to 

achieve a presumed fundamental period of vibration. 

2. Consider the target inter-story ductility ratio, µt, and perform nonlinear pushover analysis 

and assign member strengths based on an arbitrary seismic design lateral force pattern 

such as code-based pattern. In this investigation, for nonlinear static pushover and non-

linear time history dynamic analyses, the computer program OpenSees [44] developed at 

the University of Berkeley is utilized. The solutions are obtained using step‐by‐step 

integration of equations of motion using Newmark beta method. 

3. Select and scale a given ground motion based on seismic code ([1] or [2]) for the desired 

hazard level. Here, the ground motion hazard level with 10 percent probability of 

exceedance of a given ground motion intensity measure in 50 years is selected.  

4. Perform nonlinear dynamics time history analysis and calculate the maximum inter-story 

ductility ratio, µmax(i). Control the ductility demand such that the following expression is 

achieved. 

 

max= 100 0.5i t

i

t

 



    (1) 

 

If the above condition is met, the structure will be regarded as optimum. Otherwise, the 

story shear strength at each story must be modified by a correction factor of 
0.05

max ( )i t  . 

The process of updating the height-wise distribution of story shear strength is repeated until 

max( )i ( )y i
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βi is less than 0.5. 

5. The designed frame is optimum and energy demand parameters need to be computed. 

For MDOF systems the governing equation of the motion subjected to a horizontal 

earthquake ground motion can be defined as: 

               gM u t C u t K u t M u t                  (2) 

where M, C, and K are mass, damping, and lateral stiffness matrices of the system, 

respectively. ( )u t  is the relative acceleration, ( )u t  is the relative velocity, ( )u t  is the vector 

of i-th lateral floor displacements relative to the ground with t representing time, ( )gu t  is 

vector of the ground acceleration [45]. By integrating Eq. (2), the energy equation of an 

MDOF system can be obtained: 

 

           
0 0 0 0

t t t t

gM u t C u t K u t M u t                     (3) 

 

In another form, the Eq. (3) can be written as: 

 

0 0 0

( ) ( ) ( ) 0

t t t

tMu t du Cu t du Ku t du      (4) 

 

where t gu u u   . For a diagonal matrix of M, the Eq.[4] can be written as: 

 

( ) ( ) ( ) ( )K D H IE t E t E t E t    (5) 

 

where  

 

2

1

1
( ) ( )

2

n

K ii ti

i

E t m u t


   (6) 

1 10

( ) [ ( ) ( )]

t n n

D ij i j

i j

E t c u t u t dt
 

   (7) 

1 10

( ) [ ( ) ( )]

t n n

A ij i j

i j

E t k u t u t dt
 

   (8) 

10

( ) ( ) ( )

t n

I ii ti g

i

E t m u t u t dt


   (9) 
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where ( )KE t , ( )DE t  are respectively is absolute kinetic energy, damping energy. ( )AE t  is 

retrievable absorbed energy
 

due to elastic strain and hysteretic energy ( )hE t  that is 

unrecoverable and is directly related to the yielding of the structural elements, ( )IE t  is the 

total absolute input energy of the system, and m, c, and k represent the components of 

matrices M, C, and K, respectively. For a nonlinear system with concentrated plasticity, Eqs. 

(7-8) for computing time history energy demand parameters can be written as:  

 

       
0 1 1

ft n n

D f i j i j

t i j

E t c t u t u t t
  

 
  

 
  (10) 

       
1 1

1

2

n n

A f ij i j

i j

E t K t u t u t
 

  (11) 

     
0 1

ft n

I f i i g i

t i

E t m u t u t t
 

 
   

 
  (12) 

 

where ft and t are time step in dynamic analysis and total ground motion duration. 

6. Having ( )gu t  , ( )u t  and ( )u t  from the optimum designed structure obtained from step 5, the 

time history energy demands are computed from Eqs (10) to (12).  

7. Steps 1- 6 are repeated for optimum and code-based designed structures of other models with 

different number of stories, fundamental periods, ductility ratios (i.e., μt= 2,3,4,6), to obtain 

the input, damping and hysteretic energy demands spectra. 

The proposed optimization method is applied to a generic steel frame of 12 stories with 

T= 1.5 sec, and µt= 2 and 6 representing low and high levels of inelasticity subjected to 40 

earthquake ground motions used in this study. Table 2 shows a comparison of the average 

results obtained from optimum designed structures and the corresponding code-compliant 

designed models. It can be seen that a significant difference is observed between the story 

damage distribution (ductility demand profiles) resulted from the two designed frames. In 

fact, the height-wise distributions of story ductility demands resulted from utilizing code-

based design lateral load patterns [1] are very non-uniform with respect to the corresponding 

optimum cases. As seen from Table 2, the coefficient of variation (COV) for ductility 

demand distributions in optimum designed structures are significantly lower than those in 

code-based structures. 

 
Table 2: Mean story ductility demands for 12-story optimum and code-based designed frames  

 
μ=2 μ=6 

 

Story 

μCode 

COV= 42.7% 

μOPT 

COV= 1.18% 

μCode 

COV= 54.2% 

μOPT 

COV= 2.1% 

1 1.00 2.02 6.01 6.02 

2 0.90 1.98 5.14 5.95 

3 0.75 1.97 4.42 5.9 

4 0.72 1.96 3.75 5.93 



SEISMIC ENERGY DEMANDS OF INELASTIC BUILDINGS DESIGNED WITH … 

 

421 

5 0.62 1.95 3.17 5.85 

6 0.66 1.98 2.83 5.88 

7 0.67 1.95 1.77 6.02 

8 0.72 1.99 1.51 6.03 

9 0.90 1.96 1.29 5.94 

10 1.20 1.97 1.14 5.89 

11 1.50 1.94 1.42 5.88 

12 2.00 2 3.95 5.87 

 

 

4. SEISMIC ENERGY DEMANDS OF BUILDING STRUCTURES DESIGNED 

BASED ON OPTIMUM DISPLACEMENT-BASED AND CODE-BASED LOAD 

PATTERNS 
 

To investigate the effect of optimum deformation theory on energy demands spectra, the 

proposed optimization algorithm are applied and energy demand parameters defined through 

Eqs. (10) to (12) were computed for all of the 12 generic-framed steel-moment resisting 

systems with the fundamental periods of vibration ranging from 0.3 to 3.0 s, for four levels 

of inelastic behaviors μ= 2, 3, 4, 6, representing the low, moderate, high and severe inelastic 

states, respectively. However, for input energy demand spectra the elastic state was also 

depicted. Fig. 3 shows the mean results for input energy, damping energy and yielding 

hysteretic energy spectra subjected to 40 earthquake ground motions. In order to compare 

the results, all the energy parameters which are shown in the vertical axis of the provided 

figure are normalized by total building mass. The abscissa in all figures is also the 

fundamental period of vibration of structures. In Fig. 3, the plots in the left side correspond 

to the optimum design (denoted by OPT_UDT) and the plots in the right side correspond to 

the code-based structures designed by seismic code patterns (denoted by SCP). As can be 

seen in input energy spectra, the general form of the code-based and optimum structures are 

identical. Nevertheless, in inelastic range of response, the average energy demand imparted 

to the mid- and long-period code-based frames are greater than those imparted to the 

corresponding optimum models. This phenomenon will be discussed in more detail in the 

next part. Normalized damping energy spectra of code-based and optimum frame prototypes 

also show the same variation as illustrated for input energy spectra. However, the damping 

energies of the optimum structures are significantly lower than those of the code-based 

structures, which is more significant for higher inelastic range of responses. In addition, it is 

observed that the variation of normalized damping energy demands with ductility ratio (μ) 

for code-based frames is more sensitive than optimum designed structures such that in 

comparison to optimum structures, as ductility ratio increases the damping energy decreases 

with greater quantities. The general trend of normalized hysteretic energy spectra are 

somewhat different from input and damping energy spectra such that in code-based designed 

structures by increasing the inelastic behavior the hysteretic energy demands significantly 

increase while for the cases of optimum structures, except for low inelastic state with μ= 2, 

no substantial variations can be seen for moderate and high inelastic behaviors. In addition, 
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unlike to the input and damping energy spectra, the mean values of hysteretic energy 

demand for optimum structures are significantly larger than those of corresponding 

structures designed by code-based patterns, which are more pronounced for low level of 

inelastic behavior. This phenomenon indicates that in optimum structures the seismic energy 

dissipation in each structural element is maximized and the material capacity is fully 

exploited. For better understanding, the ratios of damping and hysteretic energies to the 

corresponding input energy for different inelastic behaviors are computed and the mean 

results are depicted in Figs. 4 and 5. Results show that the damping energy ratios for 

optimum structures are always lower than code-based structures, whereas the trend is 

reversed for the case of hysteretic energy ratios. Moreover, it can be seen that, regardless of 

inelastic level of response, the damping and hysteretic energy ratios for both code-based and 

optimum strictures are in average independent of fundamental period of vibration. 

Therefore, the ratios can be considered only a function of target inter-story ductility 

demands of structures. 

 

 
Figure 3. Normalized spectra of energy parameters for optimum pattern (left) and code-based 

design pattern (Right); average of 40 earthquakes 
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Figure 4. Normalized spectra of energy parameters for optimum pattern (left) and code-based 

design pattern (Right); average of 40 earthquakes 

 

 
Figure 5. Normalized spectra of energy parameters for optimum pattern (left) and code-based 

design pattern (Right); average of 40 earthquakes 

 

To more precisely investigate the effect of optimum seismic design load patterns on 

energy demand parameters Fig. 6 is provided. The vertical axis in the this figure shows the 

ratios of energy parameters in optimum structures to those in corresponding code-based 

designed structures which are defined as: 

 

 
(13) 

 
(14) 

 

where ,  and  are input energy, damping energy and hysteretic energy 

ratios, respectively. By observing the Fig.(6-a), it is found that in elastic range of response 

(μ=1), is in average independent of seismic load pattern, and optimization does not 
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affect the elastic energy demand imparted to the structures. Nevertheless, when structures 

inter to the inelastic state, this ratio is remarkably influenced by the variation of the ductility 

ratio such that in short-period structures the energy values imparted to the optimum 

structures are larger (up to 21%) than those imparted to the code-based systems. After a 

threshold period (here T=0.6), the trend is reversed in such a way that the optimum designed 

structures take the input energies much lower than the corresponding code-based models, 

which are more intensified as the target ductility ratio increases i.e., up to 23% less than 

code-based frames, signifying the effect of seismic load patterns on seismic input energy 

demands of MDOF structures. Therefore, using the displacement-based optimum design 

philosophy can result in overestimation and underestimation of input energy demands for 

the structures designed based code-compliant lateral load patterns. Similar to the , 

Figs. (6-b) and (6-c) are illustrated for and . Considering Fig. (6-b), it is 

obvious that for all ductility ratios the values of are always less than unity, meaning 

that the damping energy in optimum structures are always lower than code-based structures. 

This conclusion is in accordance to the optimization target which indicates that a status of 

uniform distribution of structural damage over the height of the structures is a direct 

outcome of the optimum use of material. In fact, it is expected that the dissipation of seismic 

energy in each element is maximized and the material capacity is fully exploited, which is 

observable in Fig. (6-c). As seen, the values of are always significantly larger than 

unity, implying that the optimum structure can dissipate the seismic input energy through 

inelastic behavior of their structural elements much more than its code-based designed 

structure counterpart. The maximum ratio is 2.56 for low inelastic behavior and reaches 1.2 

for μ=6. The interesting point is that while the input energy demands of optimum structures 

are generally greater than code-based structures, the structural weight in optimum frames is 

much lower than that in structures designed by seismic code load pattern (see Fig. 7). It is 

seen that as ductility demand increases the structural weight ratio, defined as structural 

weight in code-based structures normalized by structural weight in the corresponding 

optimum structure (denoted by ψ), increases up to 2.2 for higher level inelastic behavior, 

demonstrating the efficiency of the proposed optimization approaches in seismic 

performance of building structures. 
 

IE Ratio

DE Ratio HE Ratio

DE Ratio

HE Ratio
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Figure 6. (The ratio of OPT to Code) Normalized spectra of energy parameters for optimum 

pattern (left) and code-based design pattern (Right); average of 40 earthquakes 

 

 
Figure 7. Structural weight ratio; the ratio of structural weight in code-based structures to that in 

optimum structure; average of 40 earthquakes 
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5. EFFECT OF OPTIMIZATION ON ENERGY-BASED REDUCTION 

FACTORS OF STRUCTURES 
 

In force-based seismic design of structures, response modification factor or so-called 

strength reduction factor ( Rs) is one of main parameters to incorporate the inelastic 

behaviour of the structures during an earthquake event [39, 46]. In fact, during a strong 

earthquake excitation, the total design strength recommended in seismic provisions are 

typically much lower than the total elastic base shear strength. Strength reductions from the 

elastic strength demand are prevalently accounted for through the use of strength reduction 

factor, Rs, which is one of the most controversial issues in the seismic-resistant design 

provisions. This factor, strongly dependent on the energy dissipation capacity of the 

structural systems, is used to reduce the elastic design force spectra in earthquake-resistant 

design while the recommended values could be to a large extent based on judgments, 

experiences and observed behaviors of structures during past earthquake events rather than 

analytical results. Similarly, in energy-based seismic design, the energy-based reduction 

factor (REI) for an MDOF system with specified fundamental period of vibration is defined 

as the total elastic input energy normalized, ( 1)eEI   , to the total inelastic input energy 

corresponding to the target inter-story ductility ratio, ( )y tEI   , which can be written as: 

 

( 1)

( )

e

EI

y t

EI
R

EI



 





 

(16) 

 

To examine the effect of optimization on energy-based reduction factor, the mean of REI 

spectra for both optimum based and code-based structures subjected to 40 selected 

earthquake ground motions for different ductility ratios of 2, 3, 4 and 6 are computed as 

shown in Fig. 8. It is observed that the energy-based reduction factors (REI) for short-period 

optimum structures with T≤ 0.6 s and long-period structures are always lower and greater 

than those for code-based structures, respectively. The differences are intensified by 

increasing the level of inelasticity such that in long-period optimum structures with high 

level of inelastic behavior (μ= 6) the values of REI are up to 30% greater than those in code-

based structures. Conversely, in short-period optimum structures the values are up to 27% 

lower than code-based ones. As already discussed and shown in Fig. (6-a), the reason is 

referred to the difference between the inelastic input energies of optimum and code-based 

structures as the imparted energies in elastic range of response are nearly equal in both 

methods. Another point is that in velocity sensitive region (T> 0.6), REI increases with 

ductility demand while it decreases in acceleration sensitive region (T≤ 0.6). Hence, one 

may conclude that forced-based strength reduction factor and energy-based reduction factor 

have different relationship with inter-story ductility demand or inelastic behavior. In 

addition, using energy-based reduction factors of optimum structures in short-period and 

long-period regions can respectively overestimate and underestimate the required input 

energy demands for code-based structures, reflecting the difference dose exists in reality 

between the conventional forced-based methodology and energy-based seismic design 
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approach that can more realistically incorporate the frequency content and duration of 

earthquake ground motions. 

 

 
Figure 8. Energy-based reduction factors for optimum and code-based designs of structures; 

average of 40 earthquakes 
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Figure 9. COV for optimum and code-based designs of structures; average of 40 earthquakes 
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6. DISPERSIONS OF ENERGY DEMANDS FOR OPTIMUM AND CODE-

BASED DESIGNED STRUCTURES 
 

To have more reliable results in nonlinear dynamic analysis of structure when subjected to a 

series of earthquake ground motions, it is always necessary to investigate the dispersion of 

results. In this section, the dispersions of the results for different energy parameters 

including input energy ( )ICOV E  , damping energy ( )DCOV E and yielding hysteretic energy 

( )HCOV E are examined for both optimum and code-based structures through coefficient of 

variation (COV) of energy parameters. To better compare the results Fig. 9 is provided in 

such a way that the ratios of ( )iCOV E , ( )DCOV E and ( )HCOV E in code-based model (CODE) 

to those in optimum structures (OPT) are computed and plotted. Fig. (9-a) shows that while 

no specific trend for different ductility demands is observed, except for some periods and 

elastic state, the ratio is larger than unity, indicating that the dispersion of the input energy 

results for code-based models are generally up to 30% greater than optimum structures. 

Similar to the input energy results, for damping energy cases also the dispersion for code-

based structures is generally larger than optimum structures (Fig. 9-b). However, as shown 

in Fig. 8-c, the trend for hysteretic energy is completely different from input and damping 

energies such that the COV ratio are largely dependent on the level of inelastic behavior, and 

decreases as target ductility increases. The maximum value of ( )HCOV E  ratio is observed 

for low inelastic behavior of 2 in which the dispersion of the results for code-based models 

is up to 2.26 times the optimum models. It can be concluded that, in general, the dispersions 

on results for energy parameters obtained from optimum designs are in average less than 

those for code-based frame counterparts, leading to more reliable results when compared to 

the conventional code-based structures. 

 
 

7. CONCLUSION 
 

In this study, the effects of optimization on seismic energy spectra including input energy, 

damping energy and yielding hysteretic energy are parametrically discussed. To this end, 

generic steel moment-resisting frames are optimized by using uniform damage and 

deformation approaches subjected to a set of 40 non-pule strong ground motions. Then, the 

maximum energy demand parameters are computed for different structures designed by 

optimum load pattern as well as code-based pattern. The results of this parametric study can 

be summarized as: 

 In elastic range of response (μ=1), is in average independent of seismic load 

pattern, and optimization does not affect the elastic energy demand imparted to the 

structures. Nevertheless, when structures inter to the inelastic state, the ratio is 

remarkably influenced by the variation of the ductility ratio such that in short-period 

structures the energy values imparted to the optimum structures are larger (up to 21%) 

than those imparted to the code-based systems. After a threshold period (here T=0.6), the 

trend is reversed in such a way that the optimum designed structures take the input 

IE Ratio
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energies much lower than the corresponding the code-based models, which are more 

intensified as the target ductility ratio increases. 

 The values of are always significantly larger than unity, implying that the 

optimum structure can dissipate the seism input energy through inelastic behavior of their 

structural elements much more than its code-based designed structure counterpart. The 

maximum ratio is 2.56 for low inelastic behavior and reaches 1.2 for high level of 

inelastic response, μ=6. This phenomenon indicates that in optimum structures the 

seismic energy dissipation in each structural element is maximized and the material 

capacity is fully exploited. While the input energy demands of optimum structures are 

generally greater than code-based structures, the structural weight in optimum frames is 

much lower than that in structures designed by seismic code load pattern. It is seen that as 

ductility demand increases the structural weight ratio, defined as structural weight in 

code-based structures normalized by structural weight in the corresponding optimum 

structure, increases up to 2.2 for higher level inelastic behavior, demonstrating the 

efficiency of the proposed optimization approaches in seismic performance of building 

structures. 

 Using energy-based reduction factors of optimum structures in short-period and long-

period regions can respectively overestimate and underestimate the required input energy 

demands for code-based structures, reflecting the difference dose exists in reality 

between the conventional forced-based methodology and energy-based seismic design 

approach that can more realistically incorporate the frequency content and duration of 

earthquake ground motions.  

The dispersions of the results for energy parameters obtained from optimum designs are 

in average less than those for code-based frame counterparts, leading to more reliable results 

when compared to the conventional code-based structures. 
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