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ABSTRACT 

 
This paper presents a design process using a course grained parallel genetic algorithm to 
optimize three-dimensional steel moment frames by considering the axial force and biaxial 
bending moments interaction in plastic hinge formation. The objective function is to 
minimize the total weight of the structure subjected to the reliability constraint of the 
structural system. System reliability analysis is performed through the proposed Modified 
Latin Hypercube Simulation (M-LHS) Method. For optimization, a 3DSMF-RBO program 
is written in CSHARP programming language. The reliability analysis results show a large 
decrease in the number of simulation samples and subsequently a decrease in the execution 
time of optimization computation. The optimization results indicate that by considering 
interaction of the axial force and biaxial bending moments in plastic hinge formation rather 
than the only bending moment, to some extent increases the total weight of the designed 
structure. 
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1. INTRODUCTION 
 

In the field of civil engineering one try to achieve specific objectives in order to optimize 
weight, cost of construction, geometry, layout, topology and computational time satisfying 
specific constraints. Since resources and time are always limited, solutions must be found to 
optimize the use of these resources [1, 2]. 

                                                   
*Corresponding author: Civil Engineering Department, Shahrood University of Technology, Shahrood, 
Iran 
†E-mail address: V_Kalatjari@shahroodut.ac.ir (V.R. Kalatjari) 



H.R. Irani, V.R. Kalatjari and M.H. Dibaei Bonab 

 

138 

The optimization of structural frames has been studied by considering stress and 
displacement constraints under different load combinations, which are usually applied to two 
formulations. The first uses mathematical programming and the second uses random search 
methods. Genetic algorithms (GA) are one of the most popular methods among the second 
group [3-5]. The main difference between the mentioned methods is that in mathematical 
programming it is necessary to calculate the objective function gradients whereas, in the 
second group, the global optimization is performed by random search without using the 
gradients [6]. 

Ignoring the probabilistic nature of the structural parameters with high uncertainty results 
in the structural response to the loads becoming erroneous and far from reality. Using the 
theory of structural reliability, these uncertainties can be established into mathematical 
relationships, and the safety and performance considerations of the structure can be 
quantitatively incorporated into the design process [7]. 

Generally, limit states or load and resistance factor design (LRFD) codes for building 
structures such as AISC [8] have been developed, taking into account the reliability of 
members of a structure individually. However, because of structural redundancy or 
redistribution of forces after the failure of a member, the failure of an individual member 
does not necessarily lead to the failure of the entire structural system. Therefore, evaluation 
of the reliability of a structural system is more important than the reliability of each 
structural member individually [9, 10]. 

Several methods have been proposed to determine the safety index or the probability of 
failure of the structural members, such as First order-Second moment [11], Hasofer-Lind 
[12] and Rakwitz-Fischler [13] methods. The Hasofer-Lind and Rackwitz-Fiessler methods 
are a high-precision matrix process based on iterations that can be difficult and time-
consuming if the function is nonlinear and has a large number of variables. Therefore, in 
members such as columns in the moment frames under simultaneous axial force and biaxial 
bending moments, these methods will have their own problems due to the nonlinearity of the 
limit state function and the variety of random variables. Often for the sake of simplification, 
regardless of the simultaneous impact of axial force and biaxial bending moments, the 
failure criterion is considered due to the only bending moment failure [14, 15] or the effect 
of the axial force and bending moments separately [16]. 

When failure is defined as the creation of a mechanism in a structural system (collapse), 
determining the probability of failure requires identifying and analyzing a large number of 
significant failure mechanisms and that is time-consuming. Among the methods of 
estimating the probability of failure of the structural system, simulation techniques and 
methods based on the failure paths are the most common ones. In failure path-based 
methods, the most likely failure paths are first generated automatically, then the upper and 
lower bounds of the structural system failure are estimated based on these paths. 

In simulation techniques, the loads and resistances of a structure are randomly simulated. 
The probability of failure is a ratio between the number of failure occurrence and the total 
number of simulations. The technique is easy to apply, but when the probability of failure is 
low, as is usually the case in real structural systems, the number of simulations will be high. 
So this method is not applicable to most real problems [17]. 

In the present study, the reliability-based optimization of three-dimensional steel moment 
frames by considering the axial force and biaxial bending moments interactions is 



RELIABILITY BASED OPTIMIZATION OF 3D STEEL MOMENT FRAMES … 

 

139

investigated. The objective function is the weight of the structure so that the performance 
constraint is the overall probability failure of the structural system. The optimization is 
performed using a parallel genetic algorithm for which a program is written with CSHARP 
programming software. In the reliability analysis, uncertainties in loads, material properties, 
cross-section and plastic section modulus of members are taken into account. Reliability 
analysis has been performed using the proposed Modified Latin Hypercube simulation (M-
LHS) method which results are in an acceptable accuracy in a shorter period of time. The 
methods and results of the analysis are described in the following sections. 

 
 

2. FINITE ELEMENT ANALYSIS AND GENERATION OF SAFETY 
MARGINS 

 
Consider an arbitrary member of a space frame as shown in Fig. 1. In the local coordinate 
system of the member, the displacements of the end members by u1 to u12 and the 
corresponding end forces by Q1 to Q12 are shown. 
 

 
Figure 1. Member forces and displacements in the local coordinate system 

 
when the member is in the elastic range, the relationship between the end forces Qt and the 
end displacements ut can be expressed as follows: 
 

ttt ukQ   (1)

 

where tk  is the local stiffness matrix of the space frame members by arranging all the 

stiffness coefficients in a 12 × 12 matrix. After a section of the member has yielded, i.e. the 
plasticity condition Fk = 0 (k= i, j) is obtained, the relation between Qt and ut will be derived 
as in the following: 
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where 
)( p

tk  is the reduced stiffness matrix of the member and 
)( p

tQ  is the opposite sign of 

the equivalent nodal force vector that is given in equations 10 to 13. 
When each end of the member is failed, redistribution of the internal forces is performed 

at the end of the members, after which the analysis is re-performed and the subsequent 
failure is determined. The stiffness matrix of the failed member is modified and the 
equivalent nodal forces are applied to the nodes. After the same process is repeated, a 
structural failure occurs when a specified number of member ends are damaged. Mechanism 
formation is determined by investigating the singularity of the total reduced stiffness matrix 

of the structure 
)( qp

K . The criterion for structural failure is given by [18]: 
 

0
)(


qp

K  (3)

 
where | • | is the determinant of a matrix and superscript Pq denotes the th

qP  failure stage. 

 
2.1 Generation of safety margins for frame structures subjected to the single load effect 

Consider a structural frame with n members. As the applied bending moments extend 
beyond the fully plastic capacity, the members are assumed to fail and plastic hinges are 
formed. In structural frames, it is assumed that the plastic hinges are formed at the member 
ends. The safety margins of the member ends are [18]: 
 

 niSRM iii 2,....,2,1  (4)
 
where Ri are the strengths of the member ends defined by the full plastic moment capacity of 
the members (i.e. Ri=Zpi.Fyi) and Si are the bending moments at the end of the members. As 
a result, the criterion for end-member failure is given by: 
 

0M i   (5)
 
when a plastic hinge is formed at the left or right end of a member or when formed at both 
ends of the member, as stated in Section 5.3 of Ref. [18] and Section 8.3 of Ref. [19], the 

stiffness matrix of the member is replaced by a reduced matrix 
L
tk , 

R
tk  or 

RL
tk  

respectively, and the equivalent nodal forces 
L

tQ , 
R

tQ  or 
RL

tQ   are applied to the ends of 

the members. 
 
2.2 Generation of safety margins for frame structures subjected to the combined load effect 

In order to consider the interaction effect of internal forces on plasticized conditions, the 
yield function with a linear surface is approximated according to Equation 8. 
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where Rk is the strength of the member end k, and the vector 
T
kC  is determined by the 

dimension of the member. In Space frames, when the plastic moment capacity about the z-

axis is taken as the reference strength, Rk and 
T
kC  are given by: 
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where Api and Apj are cross-sectional areas, 

pkzZ  and 
pkyZ  are the plastic section modulus 

about the z and y axes, respectively. Using equation (2), the explicit form of 
)( p

tk  and 
)( p

tQ  

will be as follows [18]:  
1) Where the member is elastic: 
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2) In case of failure at the left-hand end: 
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3) In case of failure at the right-hand end: 
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4) In case of failure at both ends of member: 
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3. SYSTEM RELIABILITY EVALUATION 
 
The reliability of a structure is usually measured by probability values such as probability of 
failure Pf, and reliability index β. Fig. 2 schematically illustrates the problem of structural 
member reliability. On the left side of the figure, there are two probability density functions 
for "load effects" and "resistance". As long as the resistance R is greater than the load effects 
S, R>S, the member is safe. On the right side of the figure, a combined PDF for the safety 
margin called the reliability function (g = R - S) is shown. If the value of this function is 
positive, the member will resist loads. If the value is negative, a failure occurs. The 
probability of failure (defined as 0 ≤ Pf ≤ 1.0) is indicated by the solid area on the left of the 
Y-axis [20]. 

 

 
Figure 2. Representation of the structural member reliability problem [20] 

 
The structure failure probability, Pf, is given by the following formula: 
 





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where X=[x1, x2, …, xn]

T is a vector of random variables of the reliability problem, and fX(x) 
refers to a joint probability density function in X-space. The performance of each structure 
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can be expressed by the limit state function of the random variables of that structure, with 
G(X)>0 indicating a safe state and G(X)<0 failing. Evaluation of this multiple probability 
integral is a fundamental problem in structural reliability theory. The direct calculation of 
this integral is difficult, especially for real structures [21-23]. 
 
3.1 Monte carlo simulation 

In the Monte Carlo method, an estimate of the probability of failure is presented by the 
following relation [24]: 
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where I(X1, X2, . . ., Xn) is a function defined as follows: 
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According to relation 16, N independent sets of values x1, x2, . . ., xn are obtained on the 

basis of the probability distribution for each random variable and the failure function is 
computed for each sample. Using MCS, an estimate of the probability of structural failure is 
obtained as follows: 

 

N

N
p H

f   (17)

 

where NH is the total number of cases where failure has occurred ( 
)( p

K ). 

 
3.2 Modified-latin hypercube sampling 

In order to reduce the statistical error in MSC, the number of samples must be very large and 
therefore the number of calculations will be high. For this reason, various sampling 
techniques have been developed to reduce the sample size and improve the accuracy of the 
prediction. These include important sampling, adaptive sampling technique, Latin hypercube 
sampling and conditional expectation technique. Latin Hypercube Sampling (LHS) is 
generally recognized as one of the most efficient techniques of size reduction.  

In the LHS sampling method, the sampling space is divided into strata and only a few of 
the many possible samples per interval are selected. Finally, there are N sets of samples that 
can be interpreted as N vectors, selected in the Monte Carlo simulation technique and used 
directly in Eq. (17), Ref. [25]. 

In the LHS technique, strata can be fixed or variable. In order to reduce the number of 
simulations in the present study, a specific variable interval is proposed called Modified 
Latin Hypercube Sampling (M-LHS). In the M-LHS technique, the arrangement of the 
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intervals according to Fig. 3 is such that at the 2xx    and 2xx    (  is the 

standard deviation of random variable X) distance of the mean value, we have the highest 
density of selected variables. Based on the solved examples, it is suggested that 
approximately 75% of the variable simulation be selected from these ranges. It should be 
noted that the proposed method is applicable to design variables with Normal, Log-Normal, 
Extreme Type I and Extreme Type II PDFs and requires further review for other PDFs. 

 

 
Figure 3. Arrangement of strata in M-LHS technique 

 
 

4. RELIABILITY-BASED STRUCTURAL OPTIMIZATION 
 
In the present study, the reliability-based optimization of multi-story 3D steel moment 
frames has been investigated. In deterministic sizing optimization problems, the objective is 
to minimize the weight of the structure under certain deterministic constraints such as 
stresses and displacements. In optimal reliability-based design, additional probabilistic 
constraints are applied to allow different random parameters and the probability of structural 
failure to be within the acceptable ranges (e.g. 10-3). In this study, the probability of 
structural system failure, as a result of a limit Elasto-plastic analysis, is considered as the 
global reliability constraint. 

Consider a steel structure of Nm members defined in the Nd design groups. In the optimal 
design programming problem, you need to find a vector of integer values I (Eq. 18) that 
represent the number of steel sections assigned to Nd member groups. 

 
I T  

dNIII ,....,, 21  (18)
 
The aim is to minimize the weight (W) of the structural frame: 
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So that the following condition is not violated. 
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In the above equations, Ai and i are the cross-sectional area and unit weight of the steel 

section adopted for members of group i, respectively, Nt is the number of members in group i, 
and Lj is the length of the member j of group i. Pf S is the probability failure of the structural 
system and System

fP
max

 indicates the maximum allowable value of the structural failure probability. 

 
4.1 Genetic algorithm  

The main feature of GA is the survival of the best. GA starts with an initial population of 
randomly generated individuals. Each individual (chromosome) has some structural data that 
represents a possible solution in the problem search space.  

GA consists of three main parts: 1) encoding and decoding variables into strings 2) 
evaluating the fitness of each solution, and 3) applying genetic operators (selection, 
intersection and mutation) to generate the next generation. By evaluating each individual's 
fitness, the value of the objective function will be penalized if the limitations are violated. 
This process is repeated until a termination condition is satisfied. 

 
4.2 Multi search method  

The multi search method divides the entire population into sub-populations (Islands) and 
implements a GA standard for each. Before producing the next generation, the information 
(the best individuals) is exchanged between the sub-populations. In the parallelization 
process, it is important to know the migration interval and the migration rate. 

The migration operator randomly sends a percentage of the best of one subpopulation to 
another island, which has a different structure of environment and members (Figure 4). After 
the migration process, the genetic algorithm combines the populations of immigrants with 
the rest of the population and moves towards a more fit population. Because the 
characteristics of the space of each island are distinct, the answers vary greatly during the 
search process. As such, each optimization problem is examined and searched in an instant 
with several methods and then the best results are shared between the other islands. These 
properties collectively reduce the influence of parameters and relationships governing GA 
operations and increase the convergence speed of the algorithm [26]. 

 

 
Figure 4. Multi search method through random migration 
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To select the appropriate chromosomes, a combination of tournament selection, random 
selection and roulette wheel methods has been used in the islands. Also, using the elitist 
strategy, some of the fittest current-generation chromosomes are transferred directly to the 
next generation. The crossover operation also uses uniform, single-point and double-point 
crossover methods. A linearly decreasing mutation rate is also used in the mutation 
operation. 

 
 
5. FEATURES OF THE CODE WRITTEN FOR OPTIMIZATION OF THE 3D 

STEEL MOMENT FRAMES 
 
A code named 3DSMF-RBO has been written to optimize the reliability of the three-
dimensional steel moment frame by considering the axial force and biaxial bending 
moments interaction. Solutions are also provided to reduce the time required for the process 
of reliability analysis and optimization. 

In calculating the probability of structural failure, using the M-LHS method significantly 
reduces the computational time, which the next section presents the validation of this 
method. In Genetic Algorithms, one of the simplest solutions is that all non-duplicate 
chromosomes that have not been produced in previous generations with the values of the 
objective function and the penalty function are stored in a set called "NonDup". After the 
second generation, if a chromosome resembles duplicated chromosomes, it will not be 
evaluated and existing results are used directly [27]. 

 
 

6. CASE STUDIES 
 
The solutions algorithms presented in the previous sections are computerized in a design and 
optimization software that is compiled in CSHARP source code. 

To evaluate the performance of the written program, an M-LHS technique verification 
was first performed on two 3-storey and 6-storey structures. Then, to investigate the 
performance of 3DSMF-RBO program, two examples of two-dimensional and three-
dimensional steel moment frames are considered, the results of which are presented in the 
next section. 

 
6.1 Example 1: Evaluation of M-LHS method 

First, the validation of the written program to calculate the probability of failure by the 
Monte Carlo method is discussed. For this purpose, two frames are selected as examples 
from references [30] and [31]. The reference frame [30] is a two-dimensional two-storey, 
two-span frame with gravity and lateral point loads that its probability of failure is obtained 
with 5000 simulations. The reference frame [31] is a two-storey, single-span frame with 
uniform gravity loads and concentrated lateral loads whose probability of failure is 
calculated by 20,000 simulations. The results of the frame failure probability in the above 
references and the probability of failure of the written program are presented in Table 1. 
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Table 1. Verification results of failure probability for Monte-Carlo analysis 

 Reference Frame [30] Reference Frame [31] 
Probability Failure of 

References 
Pf = 0.116 Pf = 0.00175 

Probability Failure by 
Written Program 

Pf = 0.12 Pf = 0.00173 

 
In order to validate the M-LHS method, two three-story and six-story 3D steel frames are 

provided in accordance with Fig. 5. The design of these frames are based on the American 
Steel Structures Design and Loading Regulations [8, 32] using ETABS software that the 
geometric properties of the frame members are shown in Table 2. 

 

 
a) Three-story steel moment frame 

 
b) Six-story steel moment frame 

 
Figure 5. Three-dimensional steel moment frames 
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Table 2: Section properties of frame members 
(a) Three-story frame 

Story Member Profile 
Cross 

Sectional 
Area (cm2) 

Plastic Section 
Modulus about Z 

Axis (cm3) 

Plastic Section 
Modulus about Y 

Axis (cm3) 

1 , 2 
C1 HE 240B 106 1053 498 

B1 IPE 300 53.8 628 125 

3 
C2 HE 220B 91 827 394 

B2 IPE 240 39.1 367 73.9 

 
(b) Six-story frame 

Story Member Profile 
Cross 

Sectional 
Area (cm2)

Plastic Section 
Modulus about Z 

Axis (cm3)

Plastic Section 
Modulus about Y 

Axis (cm3) 

1 , 2 , 3 
C1 HE 360B 181 2683 1032 
B1 IPE 360 72.7 1019 191 

4 
C2 HE 340B 171 2408 986 
B2 IPE 330 62.6 804 154 

5 
C3 HE 280B 131 1534 718 
B3 IPE 300 53.8 628 125 

6 
C4 HE 240B 106 1053 498 
B4 IPE 240 39.1 367 73.9 

 
The probabilistic properties of all random variables are given in Table 3. 
 

Table 3: Properties of random variables 

Random 
Variable 

PDF 
Nominal 

Value 

Bias Factor 
(

alminNo

Mean
 ) 

Coefficient 
of Variation 

(C.O.V) 
Reference 

Yield Stress Fy Log-N 2400 Kgf/cm2 1.1 0.1 [33] Hess et al, 2011 

Dead Load D N Variable 1.05 0.1 
[34] Ellingwood et 

al, 1982 

Live Load L 
Extreme 
Type I 

Variable 1.0 0.15 [11] Nowak, 2010 

A and Z Log-N Variable 1.04 0.05 [33] Hess et al, 2002 

Earthquake E 
Extreme 
Type II 

3.3659.0
V

Mean
   0.56 

[35] Ellingwood et 
al, 1996 

 
The results of these analyzes with 100'000 Monte Carlo simulations, 5000 LHS 

simulation with uniform intervals and 1000 M-LHS simulations are presented in Table 4. 
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Table 4. Monte-Carlo, LHS and M-LHS method Results 

  Reliability Index  Failure Probability Pf 

3- Story Moment 
Frame 

MC Method 3.06 1.12x10-3 

LHS Method 3.09 1.0x10-3 

M-LHS Method 3.09 1.0x10-3 

    

6- Story Moment 
Frame 

MC Method 3.03 1.23x10-3 

LHS Method 3.09 1.0x10-3 

M-LHS Method 3.09 1.0x10-3 

 
As can be seen, the selection of 75% of the samples in the range defined in section 3.2, 

reduces the number of simulated samples for each variable from 100,000 samples in the 
Monte Carlo simulation method to 1000 samples in the M-LHS method. As a result, it will 
have a significant impact on the execution time of the computational probability of structural 

system failure and finally on the performance of optimization calculations. 
 

6.2 Example 2: Optimization of one-bay eight-story frame 

As shown in Fig. 6 an eight-story two-dimensional structural frame is considered for optimal 
design. This structure has been optimized by Khot et al. using the optimality criterion 
method [36]. According to Fig. 6, 24 structural members are classified into eight groups. An 
8-digit binary number is used to represent 268 W-sections of the AISC. The only constraint 
is that the lateral drift at the top of the structure is not more than 2 inches. 

For algorithm convergence, the algorithm requires an average of approximately 30 
generations. The results are compared with those of [36, 37] as presented in Table 5. 

 
Table 5: Comparison of the results for one-bay, eight-story frame 

Group number 
Number of 
members 

Khot et al. [36] Kaveh et al. [37] 
Present 
work 

1 
2 
3 
4 
5 
6 
7 
8 

4 
4 
4 
4 
2 
2 
2 
2 

W14×34 
W10×39 
W10×33 
W8×18 
W21×68 
W24×55 
W21×50 
W12×40 

W21×44 
W18×35 
W14×22 
W12×14 
W16×26 
W18×40 
W18×35 
W12×22 

W18×35 
W16×31 
W14×30 
W10×15 
W18×35 
W21×44 
W18×35 
W14×22 

Total weight 
[kN(kips)] 

- 41.02 (9.22) 31.38 (7.051) 31.86(7.16) 
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Figure 6. A one-bay, eight-story moment frame structure 

 
6.3 Example 3: Optimization of 6-story 3D steel moment frame 

The steel moment frame shown in Fig. 5b is selected as the third example to evaluate the 
performance of the written search algorithm. As can be seen in Fig. 7, 192 frame members 
are collected into 15 groups so that the columns and beams are identical in two adjacent 
stories. 268 sections of the W-section are used to assign members. The frame is subjected to 
a 1.0G + 1.0E combination of gravity (dead and live) loads and lateral (earthquake) loads. 
Earthquake loads are obtained as equivalent lateral forces outlined in the ASCE-2017 [32] 
that apply as point loads on the exterior nodes of each respective story (Fig. 5b). Table 6 
shows the gravity loading applied to the beams of the roof and floors. The probabilistic 
properties of all random variables are as in Example 1. 
 

Table 6: Gravity loading on beams of 6-story 3D steel moment frame 

Story 
Uniformly distributed load (kN/m) 
Outer beams                Inner beams 

 
Roof 

 
Floor 

 
9.42                              14.91 

 
14.7                              17.66 
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a) Plan view                                                              b)  3D view 

Figure 7. Member groups of 6-story 3D steel moment frame 
 
The performance constraint is the probability failure of the structural system (Pf system no 

more than 1.0×10-3). Frame optimization is accomplished by using a "coarse-grained parallel 
strategy" by generating 100 initial-population that are equally distributed in five sub-
populations. The migration intervals are in the 20th generation, with 5 percent of 
chromosomes migrating. 

In order to investigate the effect of axial force and biaxial bending moments interaction 
on frame optimization, frame analysis and optimal design have been performed twice. In the 
first case, the effect of axial force is neglected using the relations of Section 2.1 and in the 
second case, the axial force and biaxial bending moments interactions are considered using 
Section 2.2 relations.  

The final design and cross-sections obtained for 15 member groups through the 3DSMF-
RBO search program are listed in Table 7. Moreover, the design history curve is shown in 
Fig. 8. As shown in Fig. 8, the 3DSMF-RBO program reduces the total weight of the 
structure in which interaction between axial force and bending moment is considered, from 
2115.4 kN to 573.77 kN in approximately 200 non-ascending generations. As can be seen, 
there are few changes to the optimal design of the structure after the 100th generation. 

According to the results of Table 7, it can be seen that considering the interaction of axial 
force and biaxial bending moments, the sections of some columns have changed and the 
optimum weight of the designed structure has increased by about 4%. 

 
Table 7: The optimum design of 6-story 3D steel moment frame 

Group 
number 

Type of elements 
Number of 
members 

Designation with 
P-M interaction 

Designation without 
P-M interaction 

1 
2 
3 
4 
5 

Inner column 
Outer column 

Corner column 
Outer beam 
Inner beam 

8 
16 
8 

24 
24 

W14×90 
W16×89 
W16×67 
W16×26 
W16×31 

W16×89 
W16×77 
W16×67 
W16×26 
W16×31 
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6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

Inner column 
Outer column 

Corner column 
Outer beam 
Inner beam 

Inner column 
Outer column 

Corner column 
Outer beam 
Inner beam 

8 
16 
8 

24 
24 
8 

16 
8 

24 
24 

W12×72 
W12×79 
W12×53 
W16×31 
W16×36 
W10×49 
W12×65 
W8×31 

W10×30 
W10×26 

W12×72 
W12×72 
W12×53 
W16×31 
W16×36 
W10×45 
W12×58 
W8×31 

W10×30 
W10×26 

Total weight (kN)        - - 573.77 553.61 

 

 
Figure 8. The design history graph obtained for 6-story 3D steel moment frame in which 

interaction between axial force and biaxial bending moments is considered 
 
 

7. CONCLUSION 
 
A computer program called 3DSMF-RBO to optimize the size of moment frame structures 
under reliability constraint by considering the axial force and biaxial bending moments 
interaction of elements is developed in this paper. 

In order to calculate the probability of structural system failure, a modified hypercube 
simulation method, M-LHS, was proposed and investigated. For this purpose, the reliability 
analysis of a 3-storey moment frame and a 6-storey moment frame was performed using the 
Monte Carlo simulation and M-LHS method. It was observed that by reducing the number 
of simulated samples for each random variable from 100`000 samples in the Monte Carlo 
method and 5000 samples in LHS method to 1000 samples in the M-LHS method, the 
failure probability results were well approximated. Therefore, the time of performing the 
structural failure probability calculation and finally the execution time of optimization 
calculation is significantly reduced. 

In the developed 3DSMF-RBO program, the optimization is carried out using the parallel 
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genetic algorithm and the performance constraint is the probability of structural system 
failure using the M-LHS method. The results of the design of a 6-storey 3D frame refer to 
the efficiency of the developed program. According to the design sections and weights 
obtained for the optimized example, it was observed that by considering the interaction of 
axial force and biaxial bending moments of members, the size of some columns was 
enlarged and the optimum weight increased somewhat. 
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