دوره 9، شماره 2 - ( 1-1398 )                   جلد 9 شماره 2 صفحات 329-313 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sobhani J, Ejtemaei M, Sadrmomtazi A, Mirgozar M A. MODELING FLEXURAL STRENGTH OF EPS LIGHTWEIGHT CONCRETE USING REGRESSION, NEURAL NETWORK AND ANFIS. International Journal of Optimization in Civil Engineering 2019; 9 (2) :313-329
URL: http://ijoce.iust.ac.ir/article-1-392-fa.html
MODELING FLEXURAL STRENGTH OF EPS LIGHTWEIGHT CONCRETE USING REGRESSION, NEURAL NETWORK AND ANFIS. عنوان نشریه. 1398; 9 (2) :313-329

URL: http://ijoce.iust.ac.ir/article-1-392-fa.html


چکیده:   (15865 مشاهده)
Lightweight concrete (LWC) is a kind of concrete that made of lightweight aggregates or gas bubbles. These aggregates could be natural or artificial, and expanded polystyrene (EPS) lightweight concrete is the most interesting lightweight concrete and has good mechanical properties. Bulk density of this kind of concrete is between 300-2000 kg/m3. In this paper flexural strength of EPS is modeled using four regression models, nine neural network models and four adaptive Network-based Fuzzy Interface System model (ANFIS). Among these models, ANFIS model with Bell-shaped membership function has the best results and can predict the flexural strength of EPS lightweight concrete more accurately.
 
متن کامل [PDF 1085 kb]   (4636 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: Applications
دریافت: 1397/9/26 | پذیرش: 1397/9/26 | انتشار: 1397/9/26

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به دانشگاه علم و صنعت ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb