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ABSTRACT 
 

Flow number of asphalt–aggregate mixtures as an explanatory factor has been proposed in 

order to assess the rutting potential of asphalt mixtures. This study proposes a multiple–

kernel based support vector machine (MK–SVM) approach for modeling of flow number of 

asphalt mixtures. The MK–SVM approach consists of weighted least squares–support vector 

machine (WLS–SVM) integrating two kernel functions in order to improve the learning and 

generalization ability of WLS–SVM. In the proposed method, a linear convex combination 

of the radial basis function (RBF) and Morlet wavelet kernel functions is adopted, which are 

considered as the most popular kernel functions. To validate the efficiency of the proposed 

method, experiments are conducted on a database including 118 uniaxial dynamic creep test 

results. The results of the statistical criteria show a good agreement between the predicted 

and measured flow number values. Further, the simulation results demonstrate that the 

proposed MK–SVM approach has more superior performance than the single kernel based 

WLS–SVM and other methods found in the literature. 
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1. INTRODUCTION 
 

Rutting in asphalt has been considered as the well–known cause of traffic loads which result 

in pavement permanent deformations. The rutting phenomenon is progressively developed 

by the accumulation of the deformations [1]. The reduction of useful service life in the 

pavement is concluded by the rutting phenomenon so that serious hazards are created for 

                                                   
*Corresponding author: Department of Civil Engineering, University of Birjand, Birjand, Iran 
†E-mail address: m.khatibinia@birjand.ac.ir (M. Khatibinia) 



M. Araghi and M. Khatibinia 

 

234 

highway users [2–4]. Also, the thickness can be reduced by the rutting and the occurrence of 

pavement failure can be increased through fatigue cracking [5]. Thus, the behavior of 

asphalt mixes subjected to repeated loading such as the permanent deformation should be 

investigated [2–4, 6]. 

More researchers have drawn attention to evaluating the rutting potential of asphalt mix 

over the last decades. The most permanent–deformation models were proposed as empirical or 

semi–mechanistic models with limited fundamental material characterization. The empirical 

models were obtained using limited sets which included materials and environmental 

conditions, while the correlations of the models could not satisfy the actual field performance. 

Therefore, the models cannot be generalized for other conditions [2–4]. In order to evaluate 

and predict the rutting, three main approaches have been proposed which include (1) 

mechanistic–empirical modeling approaches, (2) advanced constitutive modeling approaches, 

and (3) development of a simple performance test [7]. The comprehensive and complete 

review of these approaches has been presented in the literature [4].  

According to the Superpave mixture design method, a direct test method has not still 

proposed in order to evaluate the permanent deformation resistance of mixtures. Hence, 

different researchers proposed an indicator parameter as rutting resistance. This parameter is 

called flow number, which can be measured using a permanent deformation test subjected to 

repeated load. In fact, the number of cycles occurred in asphalt after the tertiary deformation 

can be indicated by the flow number [5]. In order to determine the flow number, the 

dynamic tests as the very sensitive and inconvenient procedures should be performed. 

Therefore, the development of a precise model which denotes the flow number based on the 

mix design parameters of asphalts is necessary. 

During the last two decades, soft computing techniques as the modern approach for 

constructing a computationally intelligent system have been successfully used for in civil 

engineering problems [8–15]. Hence, the techniques have been adopted for modeling the 

flow number based on the mix design parameters of asphalts. Mirzahosseini et al. [16] 

utilized multi expression programming (MEP) and multilayer perceptron (MLP) of artificial 

neural networks for modeling the rutting potential of dense asphalt–aggregate mixtures. The 

simulated results verified that the MEP–based straightforward formulas in compared with 

those of MLP are much more practical for modeling the rutting potential. Alavi et al. [3] 

proposed a high–precision model for the rutting resistance of asphalt mixtures. The model 

was developed based on the hybrid of genetic programing and simulated annealing. The 

results demonstrated that the proposed model was effectively utilized for evaluating the flow 

number of asphalt mixtures. In the work of Gandomi et al. [4], gene expression 

programming (GEP) was developed to predict the flow number of dense asphalt–aggregate 

mixtures. The results showed that the simple, straightforward, and particularly formulas 

could be obtained by using GEP. Recently, Alavi et al. [1] have proposed the multi–gene 

genetic programming (MGGP) for the determination of flow number. Based on the results of 

this study, the MGGP model can be considered as a more practical model in comparison 

with the existing models. In fact, the model consists of the effects of most of the parameters 

which are required for obtaining an optimal mix design. 

Support vector machines (SVMs) were introduced as another primary class of soft–

computing methods which were used for pattern recognition in large quantities of data [17]. 

The SVM approaches use a nonlinear kernel function to map the original parameter vectors 
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into a higher dimensional feature space, referred to as primal space. This is followed by a 

procedure to find an optimum hyperplane that minimizes training error. Although Artificial 

Neural Networks (ANNs) have been implemented based on the empirical risk minimization, 

SVMs have used the structural risk minimization to eliminate the influence of the input 

space dimensionality on the computational complexity of the developed model. 

Furthermore, a solution of SVM is global and unique and can be geometrically interpreted, 

while ANNs can have multiple local minima [17]. In recent years, the SVM approaches have 

been successfully used in engineering problems[18–25]. 

The main contribution of this study is to propose a multiple–kernel based support vector 

machine (MK–SVM) approach in order to model and predict the flow number of asphalt 

mixtures. The MK–SVM approach consists of weighted least squares–support vector 

machine (WLS–SVM) which combines the radial basis function (RBF) and Morlet wavelet 

function as kernel function. In fact, the accuracy merits of two functions are integrated to 

improve the learning and generalization ability of WLS–SVM. The effectiveness and 

accuracy of the proposed method are investigated based on modeling results of a database 

including 118 uniaxial dynamic creep test results. The results reveal that the flow number 

can accurately be estimated by employing the proposed MK–SVM. Furthermore, the 

performance of the proposed MK–SVM is more superior than that of the single kernel based 

WLS–SVM and other methods found in the literature. 

 

 

2. EMPIRICAL MODEL FOR THE FLOW NUMBER 
 

According to several studies [1], the flow number (Fn) depends on some of the parameters 

including the percentages of coarse aggregate (CP), filler (FP), bitumen (BP), air voids (Va), 

voids in mineral aggregate (VMA) and Marshall stability to flow ratio (M/F). Consequently, 

the formulation was proposed as follows [1]: 

 

  ( , , , , , )n a

M
Log F f CP FP BP V VMA

F
  (1) 

 

where MTMD, KTMD and CTMD are stiffness, mass and damper of TMD, respectively.  xi t and 

ai(t)  are the displacement and acceleration of ith storey at the tth time, respectively. 

Furthermore, N is the number of structure storeris. 

 

 

3. EXPERIMENTAL DATABASE 
 

In order to obtain a general model for evaluating the flow number of asphalt, a database of 

laboratory including 118 uniaxial dynamic creep test results [4] is selected. The statistical 

properties of the database are shown in Table 1. In this study, the percentages of coarse 

aggregate (CP), filler (FP), bitumen (BP), air voids (Va), voids in mineral aggregate (VMA) 

and Marshall stability to flow ratio (M/F) are considered as input variables, while the flow 

number (Fn) is presented as output variable.  
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Table 1: Statistical properties of the parameters 

Parameter CP (%) FP (%) BP (%) Va (%) VMA (%) M/F Fn 

Mean 57.31 5.54 5.51 4.45 16.55 2.99 227 

Standard error 1.32 0.29 0.07 0.14 0.13 0.07 13.25 

Standard deviation 14.33 3.17 0.81 1.52 1.41 0.74 143.97 

Minimum 33 1 4 1.71 13.20 0.61 22 

Maximum 81 10 7 8.77 19.04 4.81 510 

 

 

4. WLS–SVM APPROACH 
 

Support vector machines (SVMs) have two inherent drawbacks: 1) incapability to accurately 

tune the penalty parameter or kernel parameter settings, and 2) their sole reliance on support 

vectors to determine the decision boundary. In case support vectors are formed by outliers in 

the training dataset, the latter drawback will cause the decision boundary to significantly 

deviate from the optimum hyperplane, making the SVM outputs very sensitive to outliers [26].  

Suykens et al. [17] addressed these drawbacks by introducing weighted least squares 

support vector machines (WLS–SVM), where the robustness of a least squares SVM is 

improved by assigning weights to its error variables. Given a training dataset of N samples 

1{( , )}x
N

k k ky 
with input data x R

d

i   and output data ,Riy   WLS–SVM regression is 

formulated as the following optimization problem in the primal weight space [27]: 
 

2

1

1 1
Minimize : ( , )

2 2

Subject to : ( ) , 1,2,...,

w e w w

w x

N
T

i i

i

T

i i i

J v e

y b e i N







 

   


 (2) 

 

where (.) :R R
d d   is an operator mapping the input space into a higher dimensional 

space; dw R represents weight vector in primal weight space; and ie R  and bR  

represent error variable and bias term, respectively.  

In primal weight space, the model of WLS–SVM is expressed by the optimization 

problem (Eq. 2) and the training set as: 

 

( ) ( )x w x
Ty b   (3) 

 

Generally, the structure of the function )(x  is unknown. Hence, it is impossible to 

indirectly calculate w  from Eq. (2). Therefore, the solutions of WLS–SVM regression are 

obtained by constructing a Lagrangian function as: 

 

1

( , , ; ) ( , ) ( ( ) )w e x w e w x
N

T

i i i i

i

L b J b e y 


      (4) 
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where i  is the Lagrangian multipliers. The conditions for optimality are given by: 

 

0 , 0 , 0 , , 0
w i i

L L L L

b e 

   
   

   
 (5) 

 

which together with the elimination of w and e result in the following Karush–Kuhn–

Tucker (KKT) system: 

 

0

α yV
T

N

n
b


     

     
    

1

1 0
 (6) 

 

in which 

 

1 ,

1 1
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V x x

y α

N i j i j H
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y y

    

 

   
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 (7) 

 

where the weight factors kv  are given by Widodo and Yang [28]: 
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 (8) 

 

where ŝ  is a robust estimation of the standard deviation of the error variables ( 1/i i iie a D ); 

the constants 1c  and 2c  are typically chosen as 1 2.5c  and 2 3c  . Here 
1

iiD denotes the ith 

primal diagonal element of the inverse of matrix D, which is the matrix on the left–hand side 

of Eq. (6).  

Based on the Mercer’s Theorem, a kernel (.,.)K  is selected such that: 

 

( , ) ( ), ( ) ; , 1,2, ,x x x xi j i j H
K i j N    (9) 

 

The WLS–SVM model is then obtained as: 

 

1

( ) ( , )x x x
N

i i

i

y K b


   (10) 

 

In the WLS–SVM approach, the Gaussian radial basis function (RBF) is commonly 

employed as the kernel function, and it is expressed as [17]: 
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2

RBF 2
( , ) exp( )

x x
x xK




   (11) 

 

where 
2  is a positive real constant, and it is usually called the kernel width. The structure 

of the WLS–SVM approach is shown in Fig. 1. 

 

 
Figure 1. The structure of the WLS–SVM approaches [27, 28] 

 

 

5. WAVELET KERNEL FUNCTION 
 

Among different  SVM  approaches proposed in the literature, the approaches with wavelet 

kernel function have successfully been used in a variety of engineering problems [28, 18, 31, 

32]. The following section provides an introduction for the wavelet kernel function. 

Based on the wavelet concept, a signal or function can be expressed or approximated by a 

family of functions generated by the dilation (scaling) and translation of a function ( )x

called the mother wavelet as [33]: 

 

,

1
( ) ( )a c

x c
x

aa
 


  (12) 

 

where a and c are the dilation and translation factors, respectively. The wavelet transform of 

a function 2( ) ( )Rf x L  can then be expressed as: 

 

, ,( ) ( ), ( )a c a cW f f x x  (13) 
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where .,.  denotes the dot product in 2 ( )RL . 

The continuous wavelet transform (CWT) of a function 2( ) ( )Rf x L  given an admissible 

mother wavelet ( )x  is defined as: 

 

*1
( , ) ( ) ( ) ( ) ( )

x c
CWT a c f x x dx f x dx

aa
 

 

 


    (14) 

 

where *( )   denotes the complex conjugation of ( )x .  

In the work of Khatibinia et al. [18], the cosine–Gaussian Morlet wavelet was used as 

kernel function in the WLS–SVM approach. This wavelet is the real part of the Morlet 

wavelet, which is expressed as [34]: 

 
2

0 0( ) [cos( ) sin( )]exp( 0.5 )x x j x x      (15) 

 

where ω0 is the central frequency of the wavelet function. Using Eqs. (12) and (15), the 

cosine–Gaussian Morlet wavelet expression of a function is expressed as: 
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0

1
( ) cos exp 0.5

x c x c
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 (16) 

 

The translation–invariant wavelet kernels can be given by [18]: 

 

1
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N

i i

k

K
a
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 
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x x
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which gives the following expression for the kernel function of the cosine–Gaussian Morlet 

wavelet [18]: 

 

Wavelat 2
1

1
( , ) cos exp 0.5

N
i ii i

o

k

K
a aa




  
   

   


x xx x
x x  (18) 

 

It was revealed that the kernel function in the WLS–SVM approach had the highest 

accuracy [18].  

 

 

6. MULTIPLE–KERNEL SVM APPROACH 
 

In the prediction process of functions, the selection of a kernel function is very important for 

SVMs and a time–consuming task. In other words, the performance and accuracy of SVMs 

depend on choosing the appropriate kernel function and their parameters [35]. It was 

demonstrated that the kernel machines with a single kernel function such as SVMs could not 
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utilized solving some complicated problems [35]. Hence, the combination of kernel 

functions as an interesting area of research has received great deal of attentions by numerous 

researchers. The results reveal that using multiple–kernel functions instead of a single one 

can enhance the capability of the SVM approaches and improve their performances [35–38]. 

In order to improve the performance and generalization ability of the WLS–SVM 

approach, a multiple–kernel WLS–SVM called MK–SVM is proposed based on the wavelet 

and RBF kernel functions in this study, as follows: 

 

mix Wavelet RBF(1 )K K K     (19) 

 

where   is the controlled parameter. Since the RBF and wavelet kernel functions satisfy the 

Mercer’s Theorem, the linear convex combination presented in Eq. (19) satisfies the 

Mercer’s Theorem. Khatibinia et al. [18] demonstrated that the wavelet kernel function 

offered higher performance than the RBF kernel function. Hence, in this study the controlled 

parameter  is considered in the interval [0.5, 1) in order to consider the high portion of the 

wavelet kernel function in the MK–SVM approach.  

 

 

7. NUMERICAL RESULTS 
 

7.1 Scaling and dividing database 

To evaluate the effectiveness and accuracy of the proposed MK–SVM approach, the flow 

number of asphalt–aggregate mixtures is estimated using the proposed MK–SVM approach. 

In order to achieve this purpose, the database of laboratory testing results for 118 samples 

outlined in Table 1 is selected. In the database, the input variables consist of the percentages 

of coarse aggregate (CP), filler (FP), bitumen (BP), air voids (Va), voids in mineral 

aggregate (VMA) and Marshall stability to flow ratio (M/F), while the flow number (Fn) is 

considered as the output variable. Before dividing database into training and testing sets, the 

values of the input variables are normalized between 0.2 and 0.8 as follows: 

 

min

1 2

max min

i

i

x x
x b b

x x


 


 (20) 

 

where 
i

x , xmax and xmin are the normalized, maximum and minimum values of the input 

variables, respectively. In this study, b1 and b2 are assumed to be equal to 0.6 and 0.2, 

respectively. Then, the database is randomly divided into training and testing sets including 

89 (75%) and 29 (25%) samples, respectively. 

 

7.2 Model construction using the proposed MK–SVM 

The performance and the accuracy of the proposed MK–SVM depend on the controlled 

parameter .  In order to investigate the effect of the controlled parameter, the values 0.5, 

0.6, 0.7, 0.8 and 0.9 are selected for the parameter. Furthermore, the values 0   and 1 

actually correspond to the RBF and wavelet kernel functions, respectively. In the proposed 
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MK–SVM, the grid search method is used for finding the optimal values of kernel functions, 

and the 10–fold cross–validation prevents the model from over–fitting. 

 

7.3 Estimating the accuracy evaluation of MK–SVM 

In order to model the flow number of asphalt–aggregate mixtures, the proposed MK–SVM is 

trained by using the aforementioned database. For evaluating the performance of the MK–

SVM approach, Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), 

Root Mean Squared Error (RMSE) and Coefficient of Determination (R2) are considered as 

the statistical criteria. The MAE and MAPE is a quantity adopted to measure how closely a 

prediction matches the outcome. The MAE and MAPE are given as follows: 

 

1

n
i i

i

y y
MAE

n


  (21) 

1

1
100

n
i i

i i

y y
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
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(22) 

 

The RMSE between actual output and desired output is considered as the objective function, 

which can be expressed as follows: 
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   (23) 

 

The R2 represents the degree to which two variables are linearly related and is expressed 

as: 
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 (24) 

 

where 
ave

y and 
ave

y are the mean of the measurement and predicted values in the data 

samples. 

According to the aforementioned statistical criteria, the statistic results from the proposed 

MK–SVM based on the different values of the controlled parameter   are summarized in 

Table 2 for the training and testing processes. In other to compare the performance of MK–

SVM with that of the WLS–SVM approach, the statistical criteria for the WLS–SVM 

approach based on the RBF and wavelet kernel functions are also shown in Table 2. 
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Table 2: The statistical results of the proposed MK–SVM and WLS–SVM models 

Model   
Training process  Testing process 

MAPE RMSE R2  MAPE RMSE R2 

MK–SVM 0.5 1.6349 0.0121 0.9996  2.4120 0.0219 0.9991 

 0.6 1.6138 0.0190 0.9996  2.3858 0.0217 0.9991 

 0.7 1.4311 0.0098 0.9996  2.2755 0.0214 0.9991 

 0.8 1.5927 0.0117 0.9996  2.3330 0.0216 0.9991 

 0.9 1.5801 0.0116 0.9996  2.3226 0.0215 0.9991 

WLS–SVM (RBF) 1 3.0611 0.0446 0.9975  5.8035 0.2786 0.9904 

WLS–SVM (Wavelet) 0 2.0899 0.0372 0.9986  4.2530 0.1111 0.9961 

 

The comparative results of Table 2 show that the proposed MK–SVM exhibits the best 

performance than the WLS–SVM approach with single kernel function. In fact, the linear 

combination of the kernel functions can integrate their merits and can prevent the decision of 

choosing the appropriate kernel function and its parameters. Hence, the combination of the 

RBF and wavelet kernel functions can improve the learning and generalization ability of the 

WLS–SVM approach. Furthermore, it can be observed that the value 0.7   has the 

slightly best performance in comparison with the other values for the controlled parameter. 

It can be seen from Figs. 2 through 4, the proposed MK–SVM approach in comparison 

with the WLS–SVM approach with RBF and wavelet kernel functions predicts the flow 

number at high accuracy rate.  

Furthermore, Figs. 5 to 7 show the scatter diagrams for the actual values and the 

predicted values of the testing data of the proposed MK–SVM approach and the WLS–SVM 

approach with the RBF and wavelet kernel functions, respectively.  

As obvious from Figs. 5 to 7, the flow number estimates of the models are closer to the 

corresponding measured values although the proposed MK–SVM model performs better 

than the WLS–SVM model. 
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(b) 

Figure 2. Results of MK–SVM in the testing process: (a) Comparison between the measurement 

and predicted flow number, (b) Error value between the measurement and predicted flow 

number 
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(b) 

Figure 3. Results of WLS–SVM with wavelet kernel function in the testing process: (a) 

Comparison between the measurement and predicted flow number, (b) Error value between the 

measurement and predicted flow number 
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(b) 

Figure 4. Results of WLS–SVM with RBF kernel function in the testing process: (a) Comparison 

between the measurement and predicted flow number, (b) Error value between the measurement 

and predicted flow number 

 

 
Figure 5. The scatter plots of the measured and estimated flow number values in the testing 

process for the KM–SVM approach 
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Figure 6. The scatter plots of the measured and estimated flow number values in the testing 

process for the WLS–SVM approach with wavelet kernel function 

 

 
Figure 7. The scatter plots of the measured and estimated flow number values in the testing 

process for the WLS–SVM approach with RBF kernel function 
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7.4 Performance comparison of results with other techniques 

This section presents the comparison of the proposed MK–SVM approach with other 

prediction models including the gene expression programming (GEP) [4], multi expression 

programming (MEP) [16], hybrid of genetic programming and simulated annealing (GP/SA) 

[3], generalized regression neural network (GRNN) [3] and a multivariable least squares 

regression (MLSR) [3]. Table 3 presents the input parameters used in each of the models. 

 
Table 3: Input parameters of different Fn prediction models 

Case Input parameters Model 

1 CP/SP, Va, VMA, M/F GEP [4] 

2 FP, BP, VMA, M/F MEP [16], GP/SA [3],GRNN [3], MLSR [3] 

 

The results for modeling the flow number of asphalt–aggregate mixtures are obtained by 

the proposed MK–SVM based on the controlled parameter   and also compared with other 

existing models which were shown in Table 3. The comparison of results for the testing 

procedure is summarized in Table 4. 

It is evident from Table 4 that the proposed MK–SVM has the highest accuracy for 

modeling the flow number of asphalt–aggregate mixtures by comparing with the other 

methods. Thus, the proposed MK–SVM is more robust and is reliably utilized for prediction 

of the flow number of asphalt–aggregate mixtures. 

 
Table 4: Comparison of the performance results of various methods 

Case Method MAE RMSE R2 

1 MK–SVM 0.0540 0.0048 0.9991 

 GEP [4] 0.0990 0.1265 0.8949 

2 MK–SVM 0.0467 0.0036 0.9992 

 MEP [16] 0.071 NR* 0.9506 

 GP/SA [3] 0.094 0.1140 0.9370 

 GRNN [3] 0.0620 0.0949 0.9584 

 MLSR [3] 0.1250 0.1612 0.8593 

* No reported 

 

 

9. CONCLUSION 
 

In this study, a multiple–kernel based support vector machine (MK–SVM) approach was 

proposed to accurately model the flow number of asphalt mixtures. The main aim of this 

approach was to prevent the decision of choosing the appropriate kernel function and its 

parameters. For achieve this purpose, the weighted least squares–support vector machine 

(WLS–SVM) integrated the radial basis function (RBF) and Morlet wavelet kernel 

functions. In the proposed MK–SVM, the linear convex combination of these kernel 

functions was adopted. 

In order to validate the efficiency of the proposed MK–SVM, a database including 118 

uniaxial dynamic creep test results was firstly selected. Then, the results of MK–SVM were 
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obtained and compared with the WLS–SVM and other models. Therefore, the following 

conclusions can be derived from the results presented in this study: 

 The results demonstrate that the combination of the kernel function accurately predict the 

flow number of asphalt mixtures and improve the performance of WLS–SVM. In fact, 

this approach can integrate the merit of these kernel function and their advantages are 

simultaneously used in the training procedure of WLS–SVM.  

 The results demonstrate that the proposed MK–SVM approach has more superior 

performance than the single kernel based WLS–SVM and other methods found in the 

literature. 

The proposed MK–SVM can reliably utilize for estimating the flow number and can be 

replaced instead of carrying out the expensively laboratory tests. 
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