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ABSTRACT 
 

In this article, by Partitioning of designing space, optimization speed is tried to be increased 

by GA. To this end, designing space search is done in two steps which are global search and 

local search. To achieve this goal, according to meshing in FEM, firstly, the list of sections 

is divided to specific subsets. Then, intermediate member of each subset, as representative 

of subset, is defined in a new list. Optimization process is started based on the new list of 

sections which includes subset’s representatives (global search). After some specific 

generations, range of optimum design is indicated for each designing variable. Afterwards, 

the list of sections is redefined relative to previous step’s result and based on subset of 

relevant variable. Finally, optimization will be continued based on the new list of sections 

for each designing variable to complete the generations (local search). In this regard, effect 

of dimension and number of subset’s members of global and local searches in proposal are 

investigated by optimization examples of skeletal structures. Results imply on optimization 

speed enhancement based on proposal in different cases proportional to simple and 

advanced cases of GA. 
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1. INTRODUCTION 
 

Genetic Algorithm (GA) is one of meta-heuristic methods which follow biologic rules of 

nature. This method is an intelligent search method that is formed based on gens and 
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chromosomes structures and inspired by reproduction of creatures. GA is firstly proposed by 

John Holland in 1975 at Michigan University [1], and then, it was developed by some of his 

students such as Goldberg [2]. Various articles are presented that are related to optimization 

of structural systems by GA. Developing GA application domain in different structural 

optimization, result improvement, computation speed enhancement, etc. are various 

researcher’s goals and fields. Therefore, researches on optimization of structure based on 

GA have long history and are continued up to now with high consideration of researchers 

[3-11]. This intelligent method successfully finds out general optimum design without 

considering the limitation assumptions like continuous of search space and existence of 

derivations. GA is firstly started with set of random designs (strings) which is called 

population. These designs are used to build next population, so that new population hoping 

to be better than old population. Methods that are offered for creating new population are 

established based on selecting proper members. Hence, the bests will be more probable to 

reproduction and survival. This process is repeated to result in optimum design based on 

convergence criterion. Structural optimization process via GA is shown in Fig. 1. 

 

 
Figure 1. optimization flowchart of structures via GA 

 

In GA, length of each string is enlarged by increasing the number of sections. This issue 

will lead to decreasing the convergence speed [12-14]. Therefore, in this article, length of 

each string going to be shortened in optimization process by proposing design space 

meshing. These results in increasing the convergence speed of optimization by means of 

GA. Based on GA and using proposal, search procedure in optimization process is done in 

two steps: global and local search. It will be done by dividing search space using a method 
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similar to meshing in finite element method. In this regard, number of subset members in 

global and local search is evaluated which is similar to mesh’s dimension in finite element 

method. During investigations, proposal in different cases (different number of members for 

subset) is compared to simple and advanced of GA. For advanced case of GA, new and 

applicable method of MSM based on GA methods is benefitted. This method causes to 

enhancement of GA efficiency in optimization of structures using different island with 

various GA structures [5 and 15]. It is notable that some examples of skeletal structures 

optimization are used to compare. To this aim, in order to diminish the effect of random 

parameters in GA, 40 independent performances is done for each case, and then average of 

convergence process for different performances (40 performances for each case) is 

presented as convergence process for regarded case. Accordingly, more suitable comparison 

is available between proposal different cases in compare to GA simple and advanced cases. 

 

 

2. FORMULATION OF STRUCTURES OPTIMIZATION BASED ON GA 
 

In this section, mathematical formulating of the optimization problem of structure cross 

section is presented. Correspondingly, member’s cross section vector [A] in a optimization 

process should be determined in such a way that minimizes weight’s function W(A). 
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Normalized G1 and G2 constraints, in order to minimize W(A) function in structures 

optimization, are usually considered as follow:  
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In Eq. (1) to (4), Ne is number of structural members, Li is the length of the ith member 

and ai is cross section of the ith member of structures or selected set of structure members. 

Nos is the number of sections for each design which is determined according to the 

structural members grouping. “S” is the list of available profiles found for the numbers of Ns 

from which the optimum designs are chosen. 

Constraint G1: In an optimum structure, stress raised from load combinations in all 
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members must be in the allowable range which is determined based on the code being used. 

Accordingly, stress value of each member of the structure in optimization process is 

controlled. Violation of the stress constraint is determined by Eq. (3). gi1(A) in this equation 

is constraints violation of stress of structure members, σi is ith member’s stress, σall is the 

value of allowable stress. In nlc number of load combinations status, values of constraint 

violation of all members are added together. 

Constraint G2: After structural analysis and calculating the stresses, the displacement of 

the active nodes in each design are calculated. If the ith degree of freedom displacement is 

in the range, no penalty will be considered; otherwise, the design will be penalized 

proportional to the violation. The violation of the displacement constraint is determined by 

Eq. (4). gi2(A) in this equation is the violation of the displacement constraints, Ndof is the 

number of active degrees of freedom for active joints of the structure, Δi indicates 

displacement of ith degree of freedom and Δi
all

 is maximum displacement of ith degree of 

freedom. In the load combinations status, the violations of the nodal displacement 

constraints are also added together for the nlc cases. 

Now, by having all information about designing the problem, optimization process is 

performable via GA. To this purpose, optimization process is applied in next section. 

 

 

3. OPTIMIZATION VIA GA 
 

Genetic Algorithm begins with an initial population like other meta-heuristic algorithms. 

Because this method work with coded design variables, it would be necessary to express the 

design variables as coded string. In this article, binary coding is used among different coding 

methods [13]. Therefore, in order to produce initial population, random binary numbers will 

be created equal to substrings which are equivalent to design variables. In discrete sizing 

optimal design of truss structures, design variables of cross section are classified members 

that should be selected from profiles list which is “S” set. In other word, each design 

variable can select a member of cross sections list. 

After producing initial population, amount of the objective function should be 

determined for each producing design. Each string indicated a design in search space and 

each substring expresses a cross section of related the list. Thus, when LS bits substring 

produce numbers zero to 2
LS

-1, the integer value equivalent to substring of ith cross section 

will be computed as bellow. 
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Each bit of “b” in Eq. (5) can choose numbers zero or one and will be shown as string. 

IRi is the integer value equivalent to ith substring. Then, in order to relate “IRi” to cross 

section number in the list of available profiles of S set “ISi”, following equation is used. 
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Based on Eq. (6), coded value of each substring is established equivalent to a member of 

S set. 

After specification of cross section of each member, objective function value will be 

evaluated. Equation (1) is used to this purpose. Then, because GA is very suitable for the 

unconstraint optimization, constraint optimization is necessarily converted to the 

unconstraint optimization problem. This subject is done by penalty function and modified 

objective function. Penalty function, in this article, is used as follow [3]. 
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In Eq. (7), fpenalty is penalty function, W(A) is objective function that is structure weight, 

Gq is the structural violation rate related to each constraints, A is the vector of design 

variables and Q is the total constraints governing the problem. nlc is the number of load 

combinations and K is the penalty constant. Now, fitness function and modified objective 

function are computed based on penalty function, and a fitness value is devoted to each 

member of population. To this purpose following modified objective function and fitness 

function is used [3]. 
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where Ffitness and φ(A) are fitness function and modified objective function of each member 

of population, respectively, and φmax(X) and φmin(X) are maximum and minimum value of 

modified objective function in current population, respectively. 

Selection process should be done after computing the fitness value of each design. In 

selection process, the best strings are selected as parent among population. There are 

various methods in GA in order to select best strings; however, among them, selecting 

strings (designs) with high fitness and reproduction of them among current population while 

they are in mating pool is the main goal. In this research tournament method is used for the 

selection process [16]. Additionally, the best design in each generation is transferred to next 

generation. 

Once the selection process is completed, the crossover operator is applied in order to 

produce a population of offsprings. For this purpose, two points crossover is used. In order to 

apply the two point cross-over process, set of parameter should be produced randomly. These 

parameters are related to find parent and cross site to apply crossover process. Mutation 

operator is another common process in GA operation which leads to evolution of population 

for next generation. Employing mutation operator results in better investigate in search space 

and creation of more scattering in the range of design search space. If crossover operator 

lonely operates without mutation operator, best string, after passing some generations, 

reproduces to number of population’s member and then crossover operator cannot create any 

change in offspring population quality or indeed optimum design results. In mutation process, 

random numbers will be produced by dedicating mutation rate to each bit (gene) of offspring. 

If this numbers be less than mutation rate, value of regarded bit would be converted from 0 to 

1 or vice versa. Finally, the termination condition is evaluated. In this research, termination 
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condition is satisfied with controlling the number of iterations [13]. After termination of the 

algorithm, the best design is obtained as optimum design. 

 

 

4. PROPOSAL OF DESIGN SPACE MESHING 
 

As it shown in section (3), based on equations (5) and (6) by increasing the member of 

sections (Ns) length of each substring (LS) will raise. Then, after increasing the length of 

substring, length of each string which states a design in search space will also increased. It 

results in reduction of convergence speed in optimization operation via GA [12-14]. It 

means, by raising member of sections in GA, convergence speed to reach the optimum point 

will decrease. 

In this article, inspired by the meshing process in finite element method, design space is 

separately decomposed and each design variable is investigated in proper range of design 

space [17]. Therefore, the list of sections is firstly divided to some subset. Number of subset 

and members of each subset is selected according to user’s point of view which is important 

factor in proposal. Thus, in this article number of subset and members of each subset in 

proposal is also evaluated. After dividing set “S” to specific number of subset, a member of 

each subset should be selected as representative of each subset. Investigations showed that, 

central member is best option to be representative of each subset. Hence, central member of 

each subset is selected as representative and gathering of representatives form the initial list 

of sections of problem in first step. Then, in first step, each subset uses the new list of 

sections to select cross section. This list has fewer members than initial list of problem, that 

is, set “S”. By specification of cross section list in first step, optimization process is started 

based on GA according section 3. Because the list of sections in this step includes 

representatives of each subset, optimization process is done by interpretation of global 

search. In other word, range of optimum design in this step for each design variable will be 

determined because of global search based on the new list of sections. Because of 

decreasing the member’s number of sections list in global search step, length of each 

substring (LS) is dramatically diminished based on equations (5) and (6). By reduction of 

length of each substring length of each string, which states a design in search space, is also 

decreased. This results in improvement of optimum process speed to reach to a suitable 

design in global search step. Optimization process in global search step is done for specific 

iterations that are determined before. This criterion is half all considered generations. This 

issue causes that the algorithm has enough time to perform global search process and find 

suitable range for each design variable in optimum design. It is notable that number of 

generations in global search step is tunable with condition of problem. 

After finishing related generations with global search, applying local search based on GA 

is going to be started. To this purpose, the list of sections is changed for each substring 

relevant to optimum design result of global search process (previous step). Therefore, in this 

step, related subset is considered as the new list of sections for design variable. Hence, each 

design variable uses only from new list of sections. It is remarkable that in this step, the list 

of sections is probably different for each design variable. On the other hand, in this step, 

because the number of new list of sections for each substring is fewer than the number of 
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initial list of sections, that is set “S” with Ns, length of each substring and then each string is 

also smaller than simple of GA. Therefore, after specification of sections list for each design 

variable, optimization process will be continued based on section 3. In this way, around 

optimum design resulted from global search is investigated in this step. 

Accordingly, optimum design range is firstly obtained by applying global search, then 

around optimum design is investigated by applying local search. A proposed idea causes 

more precision in searching the design space based on GA. On the other hand, because of 

reduction of length of each string, convergence speed in global and local searches is raised. 

Applicability of proposal will be evaluated with some examples in next section. 

 

 

5. NUMERICAL EXAMPLES 
 

In order to evaluate the performance of the proposed idea in different cases (with respect to 

the number of members of each subset), examples of the optimization of skeletal structures 

such as truss structures and frame are considered. For this purpose, the list of sections for 

truss structures was assumed based on Table 1. 

First, members of the list of section were arranged in order of cross section values as the 

smallest and the largest members with regard to cross sections are the first and the last 

members of the set, respectively. In the next step, based on the proposed, the list of sections 

can be divided into different subsets. Therefore, for list of the available sections, three cases 

are considered and regarded as the proposed cases for truss structure examples and 

compared with the simple genetic algorithm and multi-search method based on GA (MSM). 

It is noteworthy that in the case of simple genetic algorithm based on the number of 

members in the list of sections and according to relationships (5) and (6) each substring 

length is equal to six bits. As a result, the length of each string based on the number of 

design variables is 6Nos where Nos indicates the number of design variables. 

 
Table 1: Available cross-section areas of the AISC code for the truss structures 

No. in
2 

mm
2 

No. in
2 

mm
2 

No. in
2 

mm
2 

No. in
2 

mm
2 

1 0.111 71.613 17 1.563 1008.385 33 3.840 2477.414 49 11.500 7419.430 

2 0.141 90.968 18 1.620 1045.159 34 3.870 2496.769 50 13.500 8709.660 

3 0.196 126.451 19 1.800 1161.288 35 3.880 2503.221 51 13.900 8967.724 

4 0.250 161.290 20 1.990 1283.868 36 4.180 2696.769 52 14.200 9161.272 

5 0.307 198.064 21 2.130 1374.191 37 4.220 2722.575 53 15.500 9999.980 

6 0.391 252.258 22 2.380 1535.481 38 4.490 2896.768 54 16.000 10322.560 

7 0.442 285.161 23 2.620 1690.319 39 4.590 2961.284 55 16.900 10903.204 

8 0.563 363.225 24 2.630 1696.771 40 4.800 3096.768 56 18.800 12129.008 

9 0.602 388.386 25 2.880 1858.061 41 4.970 3206.445 57 19.900 12838.684 

10 0.766 494.193 26 2.930 1890.319 42 5.120 3303.219 58 22.000 14193.520 

11 0.785 506.451 27 3.090 1993.544 43 5.740 3703.218 59 22.900 14774.164 

12 0.994 641.289 28 1.130 729.031 44 7.220 4658.055 60 24.500 15806.420 

13 1.000 645.160 29 3.380 2180.641 45 7.970 5141.925 61 26.500 17096.740 

14 1.228 792.256 30 3.470 2238.705 46 8.530 5503.215 62 28.000 18064.480 

15 1.266 816.773 31 3.550 2290.318 47 9.300 5999.988 63 30.000 19354.800 

16 1.457 939.998 32 3.630 2341.931 48 10.850 6999.986 64 33.500 21612.860 
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Case 1: In this case, the list of sections in Table 1 are divided into four subsets of 16 

members as follows: 

Subset 1-S1={0.111 (71.613), 0.141 (90.968), …, 1.228 (792.256), 1.266 (816.773)} 

Subset 2-S2={1.457(939.998), 1.563(1008.385), …, 3.55(2290.318), 3.63(2341.931)} 

  

Subset 4-S4 = {11.5 (7419.43), 13.5 (8709.66), …, 30 (19354.8), 33.5 (21612.86)} 

Consequently, the number of sections in global search was 4 whereas it was 16 in the 

local search. Thus, based on equations (5) and (6) length of each substring in the global 

search stage is 2 bits while it is 4 bits in the local search which is equivalent the selection of 

a large mesh in finite element method. 

Following dividing S set into different subsets, global search stage list of sections based 

on the middle members of subsets as the representative of each subset should be established. 

Consequently, the list of sections of the optimization problem in global search stage for case 

1 will be obtained as follows: 
 

S - Case 1 = {0.602 (388.386), 2.62 (1690.319), 4.97 (3206.445), 19.9 (12838.684)} 
 

Case 2: In this case, the list of sections from Table 1 is divided into 8 subsets of 8 

members as follows: 

Subset 1-S1 = {0.111 (71.613), 0.141 (90.968), …, 0.442 (285.161), 0.563 (363.225)} 

Subset 2-S2 ={0.602 (388.386), 0.766 (494.193), …, 1.228(2290.318), 1.266(2341.931)} 

  

Subset 7-S7 = {11.5 (7419.43), 13.5 (8709.66), …, 16.9 (10903.204), 18.8 (12129.008)} 

Subset 8-S8 = {19.9 (12838.684), 22 (14193.52), …, 30 (19354.8), 33.5 (21612.86)} 

Accordingly, the number of sections for both global and local search will be 8. So that 

based on equations (5) and (6), each substring length for global and local search is four bits. 

Then, the list of sections of global search is acquired through selecting the middle 

members of subsets. Therefore, the list of sections of optimization problem in global search 

stage for case 2 is as follows: 
 

S - Case 2 = {0.307 (198.064), 1 (645.16), …, 15.5 (9999.98), 26.5 (17096.74)} 
 

Case 3: the list of sections from Table 1 is divided into 16 subsets of 4 members. 

Consequently, the number of section for global search and local search stage is 16 and 4, 

respectively. Thus, based on equations (5) and (6), length of each substring in case 3 is 4 

and 2 bits for global and local search, respectively which is equivalent the selection of a 

mesh of small size in finite element method. 

Subset 1-S1 = {0.111 (71.613), 0.141 (90.968), 0.196 (126.451), 0.25 (161.29)} 

Subset 2-S2 = {0.307 (198.064), 0.391 (252.258), 0.442 (285.161), 0.563 (363.225)} 

  

Subset 15-S15 = {19.9 (12838.684), 22 (14193.52), 22.9 (14774.164), 24.5 (15806.42)} 

Subset 16-S16 = {26.5 (17096.74), 28 (18064.48), 30 (19354.8), 33.5 (21612.86)} 

In this case also, following dividing S set, it is necessary to organize the list of sections for global 

search stage which is finally formed through selection of the middle members of the subsets. 
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S - Case 3 = {0.196 (126.451), 0.442 (285.161), …, 22.9 (14774.164), 30 (19354.8)} 

 

Moreover, as further described in Section 3, following the process of global search in 

each case, the list of sections for every design variable changes according to the results of 

global search stage and related subset, as well. Thus, the local search process will be taken. 

As it is obvious in different cases of the proposed idea for truss examples, segmentation 

dimension of S set gradually reduced. This trend can provide an appropriate judgment for 

efficiency of the proposed idea in different cases compared with simple genetic algorithm 

(SGA) and also improved genetic algorithm (MSM). 

 

5.1. A 47-bar steel tower 

A 47-bar tower, shown in Fig. 2, has been evaluated as the first example. Here E and ρ are 

assumed 30000 ksi (206842.8 MPa) and 0.3 lb/in3 (8303.97 kg/m3), respectively. 

 

 
Figure 2. A 47-bar steel tower 

 

According to the symmetry of structure, the structural members are categorized into 27 

groups and the allowable compressive and tensile stresses for all members are considered as 

15 ksi (103.4214 MPa) and 20 ksi (137.895 MPa), respectively. On the other hand, 

allowable buckling stress for each member was controlled according to reference [18] as 

shown in Eq. (9). 

 

47,....,1
2

 i
L

kEA

i

icr

i

 
(9) 

 

where k buckling constant is intended 3.96. The list of section for 47-bar tower is provided 

in Table 1. It is worth noting that the structure is subjected to three loading conditions as 

presented in Table 2. 
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Table 2: Loading conditions for the 47-bar tower structure 

Nodes 
Condition 1 Condition 2 Condition 3 

Px kips (kN) Py kips (kN) Px kips (kN) Py kips (kN) Px kips (kN) Py kips (kN) 

17 6 (26.689) 14 (62.275) 6 (26.689) 14(62.275) -- -- 

22 6 (26.689) 14 (62.275) -- -- 6 (26.689) 14(62.275) 

 

This example was examined by different cases of proposed and also simple and 

improved GA. Fig. 3 shows the convergence trend graph for this example in cases 1, 2 and 3 

as well as SGA and MSM. Each curve is obtained using the average of 40 different runs. 

Therefore, to obtain the curves in Fig. 3, a total of 200 independent runs were created. As 

seen, the second proposed case (Case 2) has better convergence than the other cases in 

obtaining the optimum design.  

 

  
Figure 3. The convergence history for the 47-bar tower 

 

Table 3 includes the results of the optimum design for case 2 as compared to the other 

references. In case 2, S set is categorized to 8 subsets of 8 members. 

 
Table 3: Optimal design comparison for the 47-bar steel tower - in

2
 (mm

2
) 

No. [18] [19] This Study No. [18] [19] This Study 

1 3.84  3.84 3.84 (2477.414) 15 1.457 1.563 1.457 (939.998) 

2 3.38 3.38 3.38 (2180.641) 16 0.442 0.442 0.563 (363.225) 

3 0.766 0.785 0.994 (641.289) 17 3.63 3.63 3.63 (2341.931) 

4 0.141 0.196 0.111 (71.613) 18 1.457 1.457 1.457 (939.998) 

5 0.785 0.994 0.785 (506.451) 19 0.391 0.307 0.25 (161.290) 

6 1.99 1.8 1.99 (1283.868) 20 3.09 3.09 3.09 (1993.544) 

7 2.13 2.13 2.13 (1374.191) 21 1.457 1.266 1.228 (792.256) 

8 1.228 1.228 1.228 (792.256) 22 0.196 0.307 0.307 (198.064) 

9 1.563 1.563 1.563 (1008.385) 23 3.84 3.84 3.84 (2477.414) 

10 2.13 2.13 2.13 (1374.191) 24 1.563 1.563 1.563 (1008.385) 

11 0.111 0.111 0.111 (71.613) 25 0.196 0.111 0.141 (90.968) 

12 0.111 0.111 0.141 (90.968) 26 4.59 4.59 4.59 (2961.284) 

13 1.8 1.8 1.8 (1161.288) 27 1.457 1.457 1.457 (939.998) 

14 1.8 1.8 1.8 (1161.288) 
Weight-

lb (kg) 

2396.8 

(1087.17) 

2386.0 

(1082.27) 

2384.2979 

(1081.499) 
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5.2. A 52-bar planar truss 

In this example, the optimal design of a 52-bar truss, shown in Fig. 4, is performed. Here, E 

and ρ are considered as 2.07 x 105 MPa and 7860 kg/m3, respectively. In Fig. 4, the loads 

Px and Py are 100 kN and 200 kN, respectively. Here, the truss members are categorized 

into 12 groups and the allowable stress constraints are considered in range of ±180 MPa. 

The sections of the 52-bar truss are listed in Table 1. 

 

 
Figure 4. A 52-bar planar truss structures 

 

Fig. 5 shows the convergence curves obtained by SGA, MSM and different proposed 

cases. Each curve is obtained using the average of 40 different runs. From this figure it can 

be deduced that Case 2 is more successful and also possesses a higher chance of obtaining 

lighter designs than the other proposed cases. 

 

  
Figure 5. The convergence history for the 52-bar truss structure 
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Table 4 shows results of optimum design compared to other references. 

 
Table 4: Optimal designs comparison for the 52-bar planar truss structure (mm

2
) 

Gr. Mem. [17] [18] [20] [21] [22] [23] This Study 

1 A1-A4 4658.055 4658.055 4658.055 4658.055 4658.055 4658.055 4658.055 

2 A5-A10 1161.288 1161.288 1161.288 1161.288 1161.288 1161.288 1161.288 

3 A11-A13 494.193 494.193 363.225 494.193 494.193 388.386 494.193 

4 A14-A17 3303.219 3303.219 3303.219 3303.219 3303.219 3303.219 3303.219 

5 A18-A23 939.998 939.998 940.000 1008.85 1008.385 940.000 939.998 

6 A24-A26 494.193 641.289 494.193 285.161 285.161 494.193 494.193 

7 A27-A30 2238.705 2238.705 2238.705 2290.318 2290.318 2238.705 2238.705 

8 A31-A36 1008.385 1008.385 1008.385 1008.385 1008.385 1008.385 1008.385 

9 A37-A39 506.451 363.225 388.386 388.386 388.386 494.193 494.193 

10 A40-A43 1283.868 1283.868 1283.868 1283.868 1283.868 1283.868 1283.868 

11 A44-A49 1161.288 1161.288 1161.288 1161.288 1161.288 1161.288 1161.288 

12 A50-A52 494.193 494.193 792.256 506.451 506.451 494.193 494.193 

Weight-kg 1903.183 1903.36 1905.495 1904.83 1899.35 1897.62 1902.605 

 

5.3. A 72-bar spatial truss 

This example deals with optimization of a 72-bar truss, as illustrated in Fig. 6. Here E and ρ 

are assumed as 10000 Ksi (68947.6 MPa) and 0.1 lb/in3 (2767.99 kg/cm3), respectively. 

Stress range for truss members and the maximum nodal displacement are limited to ±25 ksi 

(±172.369 MPa) and ±0.25 in (0.635 Cm), respectively. Present truss members are 

categorized into 16 groups. 

 

 
Figure 6. A 72-bar planar truss structure 

 

Table 1 includes the list of section and Table 5 shows the applied loads the structures in 

two different conditions. 
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Table 5: Loading conditions for the 72-bar truss structure 

Nodes 
Condition 1 Condition 2 

Px kips (kN) Py kips (kN) Pz kips (kN) Px kips (kN) Py kips (kN) Pz kips (kN) 

1 5.0 (22.241) 5.0 (22.241) 5.0 (22.241) 0 0 5.0 (22.241) 

2 0 0 0 0 0 5.0 (22.241) 

3 0 0 0 0 0 5.0 (22.241) 

4 0 0 0 0 0 5.0 (22.241) 

 

Table 6 presents the results of optimum design compared to other references.  

 
Table 6: Optimal designs comparison for the 72-bar spatial truss structure - in

2
 (mm

2
) 

Members [5] [19] [21] [23] [24] [25] This Study 

A1-A4 1.990 1.62 1.800 1.990 1.563 1.800 2.13 (1374.191) 

A5-A12 0.602 0.563 0.442 0.442 0.563 0.563 0.563 (363.225) 

A13-A16 0.111 0.111 0.141 0.111 0.111 0.111 0.111 (71.613) 

A17-A18 0.111 0.111 0.111 0.111 0.111 0.111 0.111 (71.613) 

A19-A22 1.266  1.457 1.228 0.994 1.266 1.266 1.228 (792.256) 

A23-A30 0.442 0.442 0.563 0.563 0.563 0.563 0.442 (285.161) 

A31-A34 0.111 0.111 0.111 0.111 0.111 0.111 0.111 (71.613) 

A35-A36 0.111 0.111 0.111 0.111 0.111 0.111 0.111 (71.613) 

A37-A40 0.442 0.602 0.563 0.563 0.391 0.563 0.442 (285.161) 

A41-A48 0.602 0.563 0.563 0.563 0.563 0.442 0.563 (363.225) 

A49-A52 0.111 0.111 0.111  0.111 0.111 0.111 0.111 (71.613) 

A53-A54 0.111 0.111 0.250 0.111 0.111 0.111 0.111 (71.613) 

A55-A58 0.196 0.196 0.196 0.196 0.196 0.196 0.196 (126.451) 

A59-A66 0.563 0.602 0.563 0.563 0.563 0.602 0.563 (363.225) 

A67-A70 0.391 0.391 0.442 0.442 0.391 0.391 0.391 (252.258) 

A71-A72 0.442 0.563 0.563 0.766 0.602 0.563 0.563 (363.225) 

Weight-

lb (kg) 

391.607 

(177.63) 

391.0721 

(177.387) 

393.380 

(178.4) 

393.05 

(178.284) 

390.18 

(176.983) 

389.87 

(176.842) 

389.79 

(176.806) 

 

This example is also examined using different cases of proposed idea, SGA and MSM. 

The convergence trend of the desired truss is depicted in Fig. 7. 

 

  
Figure 7. The convergence history for the 72-bar truss structure 
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As it is shown, the second proposed case (Case 2) has a better average performance and 

lead to lighter weight than the other existing cases. 

 

5.4 An eight-story, one-bay frame 

As the last example, the optimization of an eight-story frame with one bay, as illustrated in 

Fig. 8, is considered. 

 

 
Figure 8. An eight-story, one bay frame structure 

 

For all the frame members, the E and ρ are assumed as 200 GPa and 76.8 kN/m
3
, 

respectively, and the lateral drift at the top of the structure is the only performance 

constraint (limited to 5.08 cm). Effective loads are considered for one condition as shown in 

Fig. 8. Members of the mentioned frame are categorized into 8 groups selected from a list of 

268-sections (Table 7) [26]. 

 

Table 7: The available cross-section areas of the AISC W-section 

No. Section A cm
2
 (in

2
) Ix cm

4
 (in

4
) Sx cm

3
 (in

3
) Iy cm

4
 (in

4
) Sy cm

3
 (in

3
) 

1 W44 x 335 634.1923 (98.3) 1294479.734 (31100) 23105.76 (1410) 49947.771 (1200) 2458.059 (150) 

2 W44 x 290 553.5473 (85.8) 1127987.163 (27100) 20319.959 (1240) 43704.299 (1050) 2179.479 (133) 

             
267 W5 x 16 30.1934 (4.68) 886.573 (21.3) 139.454 (8.51) 312.589 (7.51) 20.811 (1.27) 

268 W4 x 13 24.7096 (3.83) 470.341 (11.3) 89.473 (5.46) 160.665 (3.86) 16.387 (1) 
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As it can be deduced from Table 7, the sections of this example are considerably 

different from the previous examples. Therefore, following sorting on the basis of cross 

section values, the list of sections can be divided into different subsets to impose the 

proposed idea. For this purpose the desired structure, as for the previous examples, has been 

evaluated in 8 different cases. For the first case (Case 1), the list of sections has been 

categorized into 4 subsets of 67 members. Thus, the length of each substring was 2 and 7 

bits regarding the global and local search, respectively. For the second case (Case 2), S set 

has been divided into 8 subsets including 7 subsets of 34 members and 1 subset of 30 

members. Consequently, global and local search stages resulted in a substring length of 3 

bits and 6 bits, respectively. For the 3rd case (Case 3), the list of sections has been divided 

into 15 subsets of 17 members and 1 subset of 13 members. Length of each substring for 

global search stage was 4 bits while for local search stage it was 5 bits. For case 4, the list of 

sections was divided into 30 subsets where 29 of subsets included 9 members and the set 

had 7 members. In this case length of each substring was 5 and 4 bits for global and local 

search stages, respectively. For the 5th case (Case 5), S set was divided into 53 subsets of 5 

members and 1 subset of 3 members. Therefore, the length of each substring for global and 

local search stage was 6 and 3 bits, respectively. For case 6, the list of sections was divided 

into 90 subsets including 89 subsets of 3 members and the last subset included just one 

member. Length of each substring for global search stage was 7 bits while for local search 

stage it was 2 bits. For case 7, simple genetic algorithm was applied. For case 8, 

optimization process is according to MSM as a novel and improved method based on 

genetic algorithm. As can be seen for the mode of different cases of proposed, length of 

each substring is considered as an increasing and decreasing trend as the size of single step 

for global and local search stage, respectively. Hence, segmentation dimension for the 

available cases becomes slightly small which is similar to decreasing the mesh size in finite 

element method to obtain an appropriate reply. 

Fig. 9 shows the convergence curve obtained by different proposed cases for this frame. 

In this example case 2 was clearly more successful amongst the different proposed cases 

and also possessed a higher speed of obtaining lighter designs than the other cases. 

The second case (Case 2) of design space exploration has been more successful than the 

other cases and also explores the design space more accurately. Table 8 presents results of 

optimal design of proposed case 2 in comparison with the other references. 
 

  
Figure 9. The convergence history for the one-bay, eight story frame 
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Table 8: Optimal designs comparison for the one-bay, eight story frame 
Gr. [17] [27] [28] [29] [30] [31] This Study 

1 W21 x 44 W18 x 46 W21 x 50 W18 x 35 W21 x 44 W18 x 35 W 18 x 35 

2 W16 x 26 W16 x 31 W16 x 26 W18 x 35 W18 x 35 W16 x 31 W 18 x 35 

3 W14 x 22 W16 x 26 W16 x 26 W14 x 22 W18 x 35 W16 x 26 W 16 x 26 

4 W12 x 16 W12 x 16 W12 x 14 W12 x 16 W12 x 22 W14 x 22 W 12 x 16 

5 W18 x 35 W18 x 35 W16 x 26 W16 x 31 W18 x 40 W16 x 31 W 18 x 35 

6 W18 x 35 W18 x 35 W18 x 40 W21 x 44 W16 x 26 W18 x 40 W 18 x 35 

7 W18 x 35 W18 x 35 W18 x 35 W18 x 35 W16 x 26 W16 x 26 W 18 x 35 

8 W16 x 26 W16 x 26 W14 x 22 W16 x 26 W12 x 14 W14 x 22 W 14 x 22 

w-kN 30.83 32.83 31.68 31.243 31.05 30.91 30.809 

 

 

6. CONCLUSION 
 

In the present study, inspiring meshing process in finite element method, design space of the 

optimization problem is divided into different parts. Hence, value of each design variable is 

explored in an appropriate range. To this purpose, optimization process is started based on 

the new list of sections by interpretation of global search. Then, following determining 

appropriate range of design variable, local search process is performed and resulting values 

of optimal design are determined. Consequently, optimization problem will be assessed 

based on the proposed idea through establishing a logical balance between global search 

process and local search process. 

Dividing S set into several subsets and selecting number of members of each subset can 

be considered as an important aspect of the proposed. In this paper, increasing trend of 

enhancing substring length in the global search stage and therefore, decreasing trend of 

substring length in the local search stage have been taken into cases for propose. Assessing 

the results revealed that selecting subsets of members by little number in the global search 

stage is not appropriate for the proposed. On the other words, as it is obvious in Figs. 3, 5, 7 

and 9 dividing S set into many subsets may enhance probability of obtaining a local 

optimum and finally decrease the efficiency of the algorithm. On the other hand, case 2 of 

the proposed with substring length of 3 bits in the global search stage provided better results 

in all examples. Logical and balanced division based on the proposed idea can efficiently 

improve genetic algorithm to obtain optimal point, indeed. Figs. 3, 5, 7 and 9 resulting from 

200 different runs for investigated examples suggests efficiency of case 2 of the proposed. 

Where decreasing in length of substring resulting from division of design space on one hand 

and availability of subsets including appropriate number of members on the other hand, 

cause to local search stage was successfully explored around the optimal design resulted 

from global search stage. This is an important result of decreasing the length of substring 

and consequently length of string in the optimization process using GA which finally brings 

about enhancing convergence speed and improving the outcomes of optimal design. 

Applicability of this proposed for other meta-heuristic algorithms are underlined as its 

obvious characteristic. On the other words, improving the performance of other meta-heuristic 

algorithms such as ACO, PSO, CSS, CBO, etc. is an effectual feature of this proposed. 
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