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ABSTRACT 
 

In this paper a Guided Tabu Search (GTS) is utilized for optimal nodal ordering of finite 

element models (FEMs) leading to small profile for the stiffness matrices of the models. The 

search strategy is accelerated and a graph-theoretical approach is used as guidance. The 

method is evaluated by minimization of graph matrices pattern equivalent to stiffness 

matrices of finite element models. Comparison of the results with those of some powerful 

methods, confirms the robustness of the algorithm. 
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1. INTRODUCTION 
 

Nowadays even though the computational tools have been improved, on the other side, 

growing new intricate models and methods are the major obstacles to resolving the 

computational cost problems. For instance for the finite element model (FEMs), as a popular 

numerical method for solving engineering problems, a great deal of computational effort and 

memory are required for the analysis of large-scale structures. The solution of a large number 

of equations, often requires high computational resources or usage of parallel computers. 

However, there are some efficient and swift methods to analyze an engineering system to 

construct sparse, well-conditioned and well-structured matrices for such model. The study of 

these techniques is the main objective of optimal analysis developed by Kaveh [1]. 

In the case of a linear static structural analysis, the assembled set of equations is of the 

form 𝐾𝑑 =  𝑟, where 𝐾 is the total stiffness matrix, 𝑑 is the nodal displacement vector, 
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and 𝑟 is the applied nodal load vector. This equation involves a positive definite and 

symmetric matrix coefficient 𝐾. Some suitable patterns for the coefficients of the 

corresponding equations have been provided, like profile form, banded form, and partitioned 

form. These patterns are often achieved by nodal ordering of the corresponding models 

which reduces the computational effort and dedicated memory. The nodal numbering is an 

NP-complete problem [2] and therefore only approximate approaches are proposed. These 

approaches can be divided into two main categories, namely graph based methods and meta-

heuristic based approaches. 

Graph based methods: A procedure was presented for the automatic renumbering of 

network equations by King [3], an algorithm for reducing the bandwidth and profile of a 

sparse matrices was described by Gibbis et al. [4]. A direct method for nodal numbering 

corresponding to narrow bandwidth was presented by Cuthill and McKee [5] and a 4-step 

systematic algorithm based on graph concepts was presented by Kaveh [6]. 

Metaheuristic based methods: An ordering for bandwidth and profile minimization 

problems via charged system search and ant system algorithm was presented by Kaveh and 

Sharafi [7,8], three recently developed meta-heuristic algorithms are used for optimum nodal 

ordering to reduce bandwidth, profile and wavefront of sparse matrices by Kaveh and Bijari 

[9]. In the above mentioned papers, meta-heuristics are applied to tune the parameters of 

Sloan's method, and the results are obtained by the tuned versions of Sloan are reported. 

Envelope reduction of sparse matrices using a genetic programming system can be found in 

the work of Koohestani and Poli [10]. 

Metaheuristic based methods usually find feasible solutions very slowly, but because of 

their search capability, these algorithms find more near optimal solutions than graph-

theoretical approaches [9]. This feature has encouraged the authors to present a new hybrid 

techniques. In this method, first King’s algorithm is utilized to find an optimal profile 

solution, then a modified tabu search algorithm is applied. This hybridization naturally leads 

to better solutions than King’s algorithm. 

The rest of this paper is organized as follows: Section 2 provides the basic definitions of 

the problem. In section 3 the necessary preliminaries of graph theory and King’s method are 

presented. In section 4 tabu search and the applied modification are introduced. Numerical 

examples are provided in section 5 and the final section concludes the study. 

 
 

2. PROBLEM DEFINITION 
 

Let 𝐾𝑑 = 𝑟 be a system of linear equation, which is generated by the finite element 

displacement method in structural analysis. 𝐾 is sparse, symmetric and positive definite 

matrix. To expedite an automated solution of the system, a data structure is desired which 

avoids the storage of a significant number of the zero entries in K and which allows trivial 

arithmetic operations to be circumvented by program logic. If 𝐾 is an 𝑛 × 𝑛 matrix, 𝑝𝑗 of 

row 𝑗 (1 ≤ 𝑗 ≤ 𝑛) equals 𝑗 − 𝑖 + 1 , where 𝑖 is the biggest integer such that 𝑎𝑖𝑗 ≠ 0. Profile 

of the matrix will be equal to ∑ 𝑝𝑗
𝑛
𝑗=1 . Profile of a finite element model can be related to the 

ordering of its nodes. The main aim of this work is to find an ordering, which minimize the 

profile. This will lead to an efficient finite element analysis. The objective function can be 

defined as: 
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𝑇𝑜 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑃𝑟𝑜𝑓𝑖𝑙𝑒 = ∑ 𝑝𝑗

𝑛

𝑗=1

 

This optimization problem can be transferred to a well-known problem in graph theory, 

so called travelling salesman problem (TSP). The only difference between these is their 

objective functions, which of profile should be replaced that of TSP. Therefore, any solution 

of the TSP by search approaches like meta-heuristics, can be converted to that of ordering 

for profile reduction. The necessary description of the TSP, is provided in the next section. 

 

 

3. PRELIMINARIES ON GRAPH THEORY 
 

3.1 Basic definitions 

Graph theory as a branch of discrete mathematics has many applications in engineering such 

as electrical, civil, computer and mechanical engineering. Here, some of the basic definitions 

are explained: 

A graph S consists of a non-empty set 𝑁(𝑆) of elements called nodes (vertices or points) 

and a set 𝑀(𝑆) of elements called members (edges or arcs), together with a relation of 

incidence which associates each member with a pair of nodes, called its ends. A graph may 

be visualized as a set of points connected by line segments in Euclidean space; the nodes of 

a graph are identified with points, and its members are identified as line segments without 

their end points. Such a configuration is known as a topological graph. Two nodes of a 

graph are called adjacent if these nodes are the end nodes of a member, the nodes adjacent to 

𝑥 can be represented by 𝐴𝑑𝑗(𝑥). A member is called incident with a node if this node is an 

end node of the member. Two members are called incident if they have a common end node. 

The degree of a node 𝑛𝑖 of a graph, denoted by 𝑑𝑒𝑔(𝑛𝑖  ), is the number of members incident 

with that node. A walk 𝑤 of 𝑆, is a finite sequence 𝑤 =  {𝑛0 ,  𝑚1 , 𝑛1 , . . . , 𝑚𝑘  , 𝑛𝑘} whose 

terms are alternately nodes 𝑛𝑗 and members 𝑚𝑗 of 𝑆 for 1 ≤  𝑗 ≤  𝑘, and 𝑛𝑗 − 1 and 𝑛𝑗 are 

the two ends of mj. A path 𝑃 in 𝑆, is a trail in which neither nodes nor members appear more 

than once. A complete graph is a graph in which every two distinct nodes are connected by 

exactly one member. Topological properties of finite element models can be transformed 

into graph models using clique graphs [11]. This graph has the same nodes as those of the 

corresponding finite element model, and the nodes of each element are cliqued, avoiding the 

multiple edges for the entire graph. 

 

3.2 King’s algorithm 

An important and simple algorithm for profile reduction is that of King [3], which operates 

as follows:  

Take a node of minimum degree and number it "1". The set of nodes is now divided into 

three subsets, A, B and C. The subset A consists of nodes already numbered. The subset B is 

defined as 𝐵 =  𝐴𝑑𝑗 (𝐴); i.e. it consists of all nodes adjacent to any node of A. C contains 

the remaining nodes. Then, at each step number the node of subset B which causes the 

smallest number of nodes of subset C to be transferred to subset B, and redefine A, B and C, 

accordingly. 
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3.3 Travelling salesman problem (TSP) 

Given a set of cities along with the cost of travel between each pair of them, the traveling 

salesman problem, or TSP for short, is to find the cheapest way of visiting all the cities and 

returning to the starting point. The “way of visiting all the cities” is simply the order in 

which the cities are visited; the ordering is called a tour or circuit through the cities [12]. It is 

an NP-hard problem in combinatorial optimization. Various heuristics and approximation 

algorithms, which quickly yield good solutions have been devised [13]. Modern methods 

can find solutions for extremely large problems within a reasonable time which are with a 

high probability just 2–3% away from the optimal solution [14]. 

Slightly modified, it appears as a sub-problem in many areas. As mentioned each route of 

TSP can be considered as an ordering of cities. The difference between TSP and optimum 

ordering for profile reduction problem, is their objective functions. It means that some of the 

TSP solutions that are not intensive to cost function can be used for profile reduction.  

Usually meta-heuristics are not sensitive to the structure of cost functions and they use 

only the evaluation results. This feature makes them convenient tool for TSP based solution 

of the ordering problem. 

 

 

4. SEARCH ALGORITHM 
 

Tabu search is a strategy for solving combinatorial optimization problem whose applications 

range from graph theory to mixed integer programming problems [15]. The steps of the 

utilized tabu search are explained in the next paragraphs. 

 

4.1 Initialization 

The initialization usually is done by producing a random solution. Because of the verified 

large-size examples and available simple solutions, King’s algorithm is utilized to produce 

primary solution. As seen in Ref. [9], usually the solutions obtained by King’s algorithm have 

close or better than that of meta-heuristics. This point encouraged the authors to utilize tabu 

search as a means for improving rather than finding a competitor for the King’s Algorithm. 

 

4.2 Main loop 

Tabu search repeats a cycle of actions until the termination conditions is satisfied. The cycle 

contains two main parts which are mentioned in two subsections. Once all neighbors of the 

current solution are evaluated, the best solution between them is replaced. Because of the 

significant time needed to do this, a modification is imposed and it is changed as follows: 

The neighbors are evaluated until the last evaluated solution has lower cost than that of 

the current solution. This modification accelerates the operation of the algorithm. 

 

4.2.1 Operations 

A permutation of integer numbers from 1 𝑡𝑜 𝑛 is vectored in a vector 𝐿 with the 

dimension of 𝑛 × 1. In this, the node should be considered as the 𝑖𝑡ℎ node, to be inserted in 

the 𝑖𝑡ℎ array. Three operators are designed to create the neighbor solution as follows: 
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 Swap operator 

 This operator selects two arrays and swap their positions as illustrated in Fig. 1.a. 

 Reversion operator 

 This selects two arrays and reverse the arrays between them as shown in Fig 1.b. 

 Insertion operator 

 This selects two arrays and inserts one of them in the front of another as illustrated in Fig 1.c. 
 

 
a. Swap operator 

 
b. Reversion operator 

 
c. Insertion operator 

Figure 1. Operations 

 

A list of all possible operations producible by operators is made and denoted by O. 

Different operations sometimes produce the same solutions, these are unified to one operation 

in O. In every production of neighbor solutions, one of the allowable operations is selected 

randomly and evaluated. This is repeated until the operations lead to 𝑃𝑟𝑜𝑓𝑖𝑙𝑒(𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) ≤
𝑃𝑟𝑜𝑓𝑖𝑙𝑒(𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑠𝑜𝑓𝑎𝑟). By finding new best solution the solution is replaced, tabu 

memory is updated and the number of iterations is increased by one.  

 

4.2.2 Update tabu memory 

Tabu search saves a sequence of the last operations whose solutions are replaced as the best. 

The memory is abbreviated as 𝑇𝑀 and its contents are limited to 𝑇𝑠. The saved operations 

are forbidden to apply. In this paper, 𝑇𝑠 is set to10, so the contents of the memory are 

updated to 10 past solutions as explained above and they are forbidden in the next 

operations. 

 

4.3 Termination condition 

The procedure is terminated when the number of iterations reaches a maximum number. The 

predetermined maximum number of iterations is set to 500, except the example 4 where is 

set to 250. The pseudo code of the applied search algorithm is summarized as follows in 

Table 1: 

 
Table 1: The pseudo code of the guided and accelerated tabu search 

Begin 

Generate a primary solution using King’s algorithm;[Guidance] 

Evaluate the profile of the solution; 

Define Ts; 
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Define the maximum number of iterations; 

while (t<Max number of iterations) 

while 𝐏𝐫𝐨𝐟𝐢𝐥𝐞(𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧) > Profile(best solution sofar) 

Generate random neighbor using operations of (O − TM); 

Evaluate the neighbor solution; 

If 𝐏𝐫𝐨𝐟𝐢𝐥𝐞(𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧) ≤ 𝐏𝐫𝐨𝐟𝐢𝐥𝐞(𝐛𝐞𝐬𝐭 𝐨𝐩𝐞𝐫𝐚𝐭𝐢𝐨𝐧 𝐬𝐨𝐟𝐚𝐫); [Acceleration] 

Update best solution so far and its profile; 

Update TM; 

t  t+1; 

End if 

end while 

end while 

End 

 

 

5. NUMERICAL EXAMPLES  
 

In this section five finite element models (FEMs) are considered and the results are 

compared to those of the other algorithms, Table 1. The topological properties of the finite 

element models are transferred to the connectivity properties of graphs, by the clique graphs. 

This graph has the same nodes as those of the corresponding finite element model, and the 

nodes of each element are cliqued, avoiding the multiple edges for the entire graph. 

Example 1: First example is a Z-shaped finite element model of a shear wall as shown in 

Fig. 2. The clique graph has 550 nodes and 2007 edges. 

Example 2: In the second example a rectangular FEM is considered with four equal 

openings. 

The clique graph of this model has 760 nodes and 2692 edges. The graph model is 

illustrated in Fig. 3.  

Example 3: A fan with eight 1D beam is considered in the third example. As shown in 

Fig. 4, the clique graph of this model has 1575 nodes and 2925 edges. 

Example 4: Consider an H-shaped finite element model of a shear wall with 4949 nodes 

and 9688 elements. Fig. 5 shows the clique graph of this. 

Example 5: As illustrated in Fig. 6 a hexagon finite element model is designed and the 

algorithm is tested on this model. The graph model has 144 nodes and 390 edges. 

 

 
Figure 2. The FEM of a shear wall with 550 nodes 
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Figure 3. The element clique graph of a rectangular FEM with 760 nodes 

 

 
Figure 4. The graph model of a fan containing 1575 nodes 

 

 
Figure 5. The clique graph of an H-shaped shear wall with 4949 nodes 
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Figure 6. The clique graph of an FEM with 144 nodes 

 

The results of the proposed method are compared with King’s method and Sloan’s 

improved versions, simple and tuned by different meta-heuristics. The graph theoretical 

methods are King’s and Sloan’s algorithms [3, 16]. The compared meta-heuristics contain 

PSO [17], ACO [18], CBO [19] , ECBO [20] , TWO [21] and CSS [22] algorithms . The 

results of different methods are presented in Table 2 and the convergence diagrams of 

present work are shown in Fig. 7. The statistical results of ten independent runs for example 

5 are presented in Table 3.The best results are written in bold font. 

 
Table 2: Comparison of the results of different algorithms for profile reduction 

Methods Example 1 Example 2 Example 3 Example 4 

King 10974 18839 28853 211731 

Sloan 10530 18719 28703 210845 

PSO [9] 10501 18690 28629 157095 

CBO [9] 10501 18689 28608 157095 

ECBO [9] 10501 18581 28587 157095 

TWO [9] 10501 18581 28579 157095 

CSS [7] - 19232 28770 206649 

Present work 7908 17525 26030 185131 

 

  
a. The convergence history of Example 1 b. The convergence history of Example 2 
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c. The convergence history of Example 3 d. The convergence history of Example 4 

 
e. The convergence history of Example 5 

Figure 7. Convergence histories of the presented method for the examples 

 
Table 3: Statistical results for Example 5 

Best result Worst result Mean result Standard deviation 

1295 1305 1302.6 3.5653 

 

 

6. CONCLUSIONS 
 

The main objective of this paper has been to propose a new hybrid method containing graph-

theoretical method which guides a well-known search strategy so called tabu search. 

Because of examined large-size problems, tabu search has been accelerated. The ordering 

problem is simulated to TSP and the applicability of this technique has been demonstrated 

by reduction of profile of five finite element models.  
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The results of the presented method are compared with those of other powerful methods. 

From Table 2 it can be seen that the proposed algorithm has obtained the best results in 

some of the examples. The differences between the results, shows the good performance of 

this method in term of global search.  

Utilizing King's algorithm as an initial solution to increase the chance of finding better 

solutions. However, this guided initial solution may lead to trapping the solution process in a 

local optima. Trying to escape from local optima sometimes is time consuming. Especially 

in large-scale problems (like Example 4) this problem was more cumbersome, and further 

research is needed to make the metaheuristic algorithms as a competitive approach to the 

graph theoretical methods. 

This method also can be employed in other type of structures and problems. In FE model 

updating problems, this may lead to good results. Particularly in aeronautics that the 

computing resources are more limited, the optimal ordering should be more valuable. 
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