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ABSTRACT 
 

Graph theory based methods are powerful means for representing structural systems so that 

their geometry and topology can be understood clearly. The combination of graph theory 

based methods and some metaheuristics can offer effective solutions for complex 

engineering optimization problems. This paper presents a Charged System Search (CSS) 

algorithm for the free shape optimizations of thin-walled steel sections, represented by some 

popular graph theory based methods. The objective is to find shapes of minimum mass 

and/or maximum strength for thin-walled steel sections that satisfy design constraints, which 

results in a general formulation for a bi-objective combinatorial optimization problem. A 

numerical example involving the shape optimization of thin-walled open and closed steel 

sections is presented to demonstrate the robustness of the method. 
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1. INTRODUCTION 
 

Thin walled steel sections, due to their higher strength to weight ratio, are economically 

advantageous in comparrison with other steel sections. In addition, fast installation, design 

flexibility and more convenient transportation have made thin-walled structures an attactive 

choice for steel framing industry in recent years. The manufacturing process allows the cross 
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sections to be tailored to suit a vriety of specific applications, by being formed into almost 

any desired shape. Taking full advantage of this great merit, designers can improve the 

competitiveness of CFS structures by finding new optimized cross-sectional shapes. 

Therefore, optimizing the thin walled steel cross section shapes is an area with great 

research potential, where various optimization methods can compete to demonstrate their 

robustness. In a thin walled cross section, the section properties are mainly dependent on the 

topology of the section which is node locations and their connectivity.  

There have been a number of different methods applied for shape optimization of thin 

walled sections in the literature. Simulated annealing algorithm [1] ,Ant Colony [2, 3], 

gradient-based steepest descent [4], genetic algorithm [4], and some graph theory based 

methods [5-7] are some of the methods recently used for this purpose. Among them, some 

methods require an initial guess to begin the optimization process with, while others are 

independent of the initial guess. The results of the first group of methods are to some extent 

dependent on the initial guess [4]. This means that different initial guesses can bias the 

results i.e. the optimum section obtained from the algorithm, which could be a major 

drawback. Therefore, methods with less sensitivity to initial guess can potentially offer 

better means for cross-section optimization [4]. There are some fabrication and geometric 

end-use limitations for optimizing a thin walled section. Depending on the manufacturing 

process, cold formed or hot rolled, limitations such as the number of bends, the width of 

coils, and the end-use dimensions or angles can be considered in optimization process [1]. 

Optimizations of thin-walled steel sections are mostly performed to obtain improvements 

in strength, serviceability, and vibration characteristics that are performed in the form of 

shape or sizing optimization of sections. In shape optimization, the vector of design 

variables represents the form of the boundary of the structural domain, while the design 

variables in sizing optimization are the dimensions of a predetermined shape. From the 

differential equations point of view , shape optimization concerns control of the domain of 

the equation, while sizing concerns control of its parameters.  
This paper develops a Charged System Search (CSS) algorithm for optimizing both 

closed and open thin walled steel sections with the help of some graph theory methods. The 

optimization criterion is to maximize the section strength under different action effects while 

minimizing the mass, with no fabrication or end-use constraints. Thin walled section 

common failure modes such as local and distortional buckling are not considered in this 

work. However, the same optimization procedure is capable of being applied to the design 

problems where buckling failure modes of thin walled sections and the fabrication and end-

use constraint need to be taken into account. The results obtained from this algorithm are 

independent of the initial guess, due to a proper primary population selection. To verify the 

proposed methodology, numerical examples are included.  

 

 

2. THE SHORTEST PATH AND MINIMUM MEAN CYCLE PROBLEMS 
 

Graph theory based models are powerful means to represent structural systems so that their 

geometry and topology can be understood clearly. A graph is defined as a set of nodes and a 

set of edges together with a relation of incidence which associates a pair of nodes with an 

edge. The pattern of connections and weight or the directions of the edges describe the 
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characteristics of a graph. In a computational mechanics, graph theory based methods enjoy 

the advantage of consistency with the finite element discretization. Problems like cross-

sectional shape optimization can be directly transformed to a discrete combinatorial 

optimization problem, arising from a graph theory problem [8]. A graph G (N,M) consists of 

a set of nodes N and a set of members M, with a relation of incidence that associates each 

edge with a pair of nodes as its ends. A path P of graph G is a finite sequence whose terms 

are alternately nodes and edges, in which no edge or node appears more than once. A cycle 

C is a path for which the starting node and the ending node are the same; i.e. a cycle is a 

closed path. The length of a path (or cycle) L is taken as the number of its edges.  

A practical NP-hard combinatorial optimization problem in the graph theory is the 

shortest path problem, which is the problem of finding a path from a specified node called 

the source, to a second specified node, called the destination (or target), such that the sum of 

the weights (or lengths) of its constituent edges is minimized. Multi-objective shortest path 

problem can be formulated by Equation (1) through (5) shown in Table 1. Constraints (3) 

and (4) state that there must be exactly one member leaving the source and entering the 

target, respectively, that is not on a cycle. Constraint (5) is the ordinary flow conversation 

constraint and represents that for all the nodes excluding source and target, the number of 

members entering and leaving is equal.  

A Cycle is a path in which the starting and ending nodes are the same. The goal of a 

minimum mean cycle problem is to find a cycle Г having a minimum ratio of length to the 

number of arcs. The multi-objective minimum mean cycle problem is an NP-hard problem 

that can be formulated by Equations (6) through (8), shown in Table 1. Eq. (8) which is an 

ordinary flow conversation, guarantees that the selected members are on a cycle.  

 
Table 1: Formulations for Multi-objective shortest path and minimum mean cycle problems 

Multi-objective Shortest path problem  Multi-objective minimum mean cycle problem  

min 𝑓

= ( ∑ 𝑐𝑒𝑖𝑗

𝑖,𝑗∈𝑉

1

, ∑ 𝑐𝑒𝑖𝑗

𝑖,𝑗∈𝑉

2

, … , ∑ 𝑐𝑒𝑖𝑗

𝑖,𝑗∈𝑉

𝑟

) 
(1) min 𝑓 =

1

|Γ|
( ∑ 𝑐𝑒𝑖𝑗

𝑖,𝑗∈𝑉

1

, ∑ 𝑐𝑒𝑖𝑗

𝑖,𝑗∈𝑉

2

, … , ∑ 𝑐𝑒𝑖𝑗

𝑖,𝑗∈𝑉

𝑟

) (6) 

∀𝑒𝑖𝑗 ∈ 𝐸: 𝑒𝑖𝑗

= {
1              𝑖𝑓 𝐸𝑑𝑔𝑒 𝑒𝑖𝑗  𝑖𝑠 𝑐ℎ𝑜𝑠𝑒𝑛

0      𝑖𝑓 𝐸𝑑𝑔𝑒 𝑒𝑖𝑗  𝑖𝑠 𝑛𝑜𝑡 𝑐ℎ𝑜𝑠𝑒𝑛
 

(2) ∀𝑒𝑖𝑗 ∈ 𝐸: 𝑒𝑖𝑗 = {
1              𝑖𝑓 𝐸𝑑𝑔𝑒 𝑒𝑖𝑗  𝑖𝑠 𝑐ℎ𝑜𝑠𝑒𝑛

0      𝑖𝑓 𝐸𝑑𝑔𝑒 𝑒𝑖𝑗  𝑖𝑠 𝑛𝑜𝑡 𝑐ℎ𝑜𝑠𝑒𝑛
 (7) 

∀𝑖 ∈ 𝑁 − {𝑠, 𝑡}: ∑ 𝑒𝑖𝑗 − ∑ 𝑒𝑘𝑖 = 0

𝑘𝑗

 (3) ∀𝑖 ∈ 𝑁 − {𝑠, 𝑡}: ∑ 𝑒𝑖𝑗 − ∑ 𝑒𝑘𝑖 = 0

𝑘𝑗

 (8) 

∀𝑖, 𝑗 ∈ 𝑁: ∑ 𝑒𝑠𝑖 − ∑ 𝑒𝑗𝑠 = 1

𝑗𝑖

 (4)   

∀𝑖, 𝑗 ∈ 𝑁: ∑ 𝑒𝑖𝑡 − ∑ 𝑒𝑡𝑗 = 1

𝑗𝑖

 (5)   

 

Cross section of a thin walled steel section can be defined by a set of nodes connected to 

each other in x-y plane, which can be represented by a graph. Sharafi et al. [9] developed an 

innovative graph theory approach for the shape and sizing optimizations of thin-walled steel 

sections. In this study, it was demonstrated that graph theory based models are a powerful 

means to represent thin-walled steel sections due to their instinctive clarity. The shape 
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optimization of open sections can be treated as a multi objective all-pairs shortest path 

problem, while that of closed sections can be treated as a multi objective minimum mean 

cycle problem. Table 2 shows the different graph theory problems corresponding to the 

shape and sizing optimization problems of open and closed sections. It also includes the 

sizing optimization of a predetermined shape or known profile. Detailed discussions on this 

topic can be found in [9].  

 
Table 2: Graph theory representation of cross-section optimization 

Optimization Problem Corresponding Graph Theory Problem 

Shape optimization of open sections all-pairs shortest path problem 

Shape optimization of closed sections minimum mean cycle problem 

Sizing optimization of known profiles single-pair shortest path problem 

 

 

3. PROBLEM DEFINITION 
 

Rapid advances in computer technology together with advances in modern metaheuristics 

have enabled the analyst to deal with problems of large sizes and employ different 

innovative methods. In most optimization cases in the engineering field, the aim is to find a 

set of design variables from a given set of feasible solutions that lead to the optimum of the 

objective function under a given set of constraints. In the present instance, the optimum 

design entails selecting the best combination among a finite number of design variables for 

the given objective and some constraints. Such a combinatorial nature, from the 

mathematical point of view, gives the optimum design procedure a discrete nature. 

For a free shape thin-walled cross-section with uniform and invariable wall thickness in 

the x-y plane, under a general set of actions, as shown in Fig. 1, the cross-section can be 

defined by n nodes and m members connecting the nodes. The cross-sectional optimization 

problem here is to find the shape resulting in the optimum mass and section strength. The 

term “section strength” is a generic term that corresponds to the imposed action effects. 

Minimizing the mass of a section is equivalent to minimizing the cross-section area A, which 

in turn reduces to the length minimization of the section, as the thickness is constant along 

the section. The dimensional constraints on the members of a cross-section are defined, 

considering the effective width (or depth) for the elements [10]. Some fabrication, 

construction or manufacturing constraints may also be applied to the cross-sectional 

dimensions. The formulations for finding a free-shape cross-section’s area and the second 

moment of area on a graph, are stated in details in [9]. 

In the present problem, the variables are the nodal coordinates of the cross-section and 

their connectivity that turn into discrete and binary variables, respectively, by being mapped 

onto a graph. The idea is to represent a cross-section design as a mathematical graph, which 

is made up of members (sub-graphs) having a one-to-one relationship with the physical 

design. Any changes to the graph reflect same to the cross-section, so the shape optimization 

of the graph is equivalent to the shape optimization of the cross-section.  
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Figure 1. Graph theory for representation of cold formed steel cross-section 

 

This shape optimization method addresses both open and closed thin walled sections. For 

shape optimization of an open section, all-pairs shortest path problem, represented by 

Equations (1) through (5) is applicable, while a closed section is considered as a minimum 

mean cycle problem represented by Equations (6) through (8). Therefore, in regards to an 

open section, the first cost is equal to the length of each edge (L(P)) and the second one 

equals to the inverse of section strength (1/SG). On the other hand, for a closed section, the 

first cost is equal to the square of each edge’s length (L2(Γ)), and the second cost assigned to 

the cycle is equal to the product of its length and the inverse of the section strength 

(L(Γ)/SG). The objective functions for open and closed sections are represented by equations 

(9) and (10) respectively: 

 

𝑓𝑃 = (𝐿(𝑃𝑖),
1

𝑆𝐺𝑖

)      𝑖 ∈ 𝐴𝑙𝑙 − 𝑝𝑎𝑖𝑟𝑠 𝑃𝑎𝑡ℎ (9) 

𝑓Γ = (𝐿(Γ𝑖),
1

𝑆𝐺𝑖

)      𝑖 ∈ 𝐴𝑙𝑙 𝑐𝑦𝑐𝑙𝑒𝑠 (10) 

 

 

4. THE FORMULATION OF SHAPE OPTIMIZATION PROBLEM 
 

The optimization problem aiming for a thin-walled section with the minimum mass and 

maximum strength can therefore, be formulated as follows: 

 

min𝑓 = (𝑊,
1

𝑆𝐺

)         𝑠. 𝑡. {
𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠
𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠  

 (11) 
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where SG is the section strength that may represent the cross sectional area, the second 

moment of area or the torsion constant. 

In shape optimization problems, different types of geometric constraints originating from 

different applications may govern the problem. Constraints such as dimensional limitations of 

coils, symmetry or anti-symmetry, parallel flanges, section dimension constraints and/or utility 

pass-through allowance can be considered in the formulation. There are two approaches for 

determining the optimized solution with maximum possible strength and minimum possible 

weight. The first approach is to achieve a Pareto-optimal set or a proper approximation of it. 

The other approach is to assign a weight to each objective before solving the problem and 

convert the multi-objective optimization problem into a single-objective problem. In the 

present study, the optimum solution is the one that provides the best compromise between two 

potentially conflicting objectives of mass minimization and strength maximization. The 

solution is a Pareto-optimal set or at least a good approximation of it.  

Pareto optimality is an economics concept invented by Vilfredo Pareto (1848-1923) that 

finds applications in engineering [11, 12]. In a Pareto improvement, at least one objective is 

achieved without sacrificing any other objective. A solution is Pareto optimal when no 

further Pareto improvements can be made. A Pareto-optimal set is a set of Pareto optimal 

solutions. Having established a Pareto-optimal set, the ultimate solution may be selected 

according to the personal intuition of the decision maker. The alternative approach is to 

formally assign weights or priorities to each objective before solving the problem so that the 

multi-objective optimization problem is transformed into a single-objective problem (as the 

various objectives are combined into one through their weighted sum). Obviously, for cases 

where the minimum required strength of the thin-walled steel section is already determined, 

the section strength is treated as a state variable and the minimum required strength is 

treated as a behavioral constraint. In such cases, the problem is instantly reduced to a single 

objective problem. 

 

 

5. CHARGED SYSTEM SEARCH ALGORITHM 
 

The two objectives of the problems are mass minimization and strength maximization. 

Section strength, depending on the instance, can be compressive, flexural, and torsional or 

shear strength. The objective of mass minimization reduces to finding the paths or cycles of 

shortest lengths for open and closed sections, respectively. The bi-objective optimization 

problems, which are also combinatorial optimization problems in the present case, can be 

dealt with using a CSS algorithm. 

The CSS algorithm is developed by Kaveh and Talatahari based on the governing 

Coulomb and Gauss laws from electrostatics and the Newtonian law of mechanics[13, 14]. 

This algorithm is a population-based search method and has been proved to be successfully 

applicable to various optimization problems [14-21]. In the CSS, each agent (CP) is 

considered as a charged sphere of radius a, which is affected by the electrical forces of other 

CPs. In case a CP positioned inside the sphere, the force magnitude of the sphere is 

proportional to the separation distance between the CPs while it is inversely proportional to 

the square of the separation distance for the ones located outside the sphere. The CPs 

location is updated considering the resultant forces or acceleration and the laws of motion. 
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The pseudo-code for the CSS algorithm can be summarized with five steps: initialization, 

determination of parameters, solution construction, updating and termination. 

At the initialization stage, the mechanical properties of the steel, maximum cross-

sectional dimensions allowed, and accuracy needed are defined. The grid pattern 

construction graph is formed in a way that every node/edge on the graph is a potential 

node/edge of a cross-section. For this purpose, some geometrical, manufacturing and 

installation constraints, which may determine the shapes’ boundaries, are applied to form the 

construction graph. The initial positions of CPs are determined randomly in the search 

space, which is the grid graph, and the initial velocities of charged particles are assumed to 

be zero. Then the CPs fitness function values are determined and the CPs are sorted in an 

increasing order. A number of the first CPs and their related values of the fitness function 

are saved in a memory called charged memory (CM). If the number of graph's edges is m 

and the number of nodes is n, the number of ants for each family is set to be the nearest 

integer to m/(n-1). 

After the initialization stage, the algorithm moves on to the determination of the forces on 

CPs. The force vector is measured for each CP as follows: 

 

𝐹𝐽 = ∑ (
𝑞𝑖

𝑎3
. 𝑟𝑖,𝑗. 𝑖1 +

𝑞𝑖

𝑟𝑖,𝑗
2 . 𝑖2. ) 𝑎𝑟𝑖,𝑗𝑃𝑖,𝑗(𝑋𝑖 − 𝑋𝑗) ⟨

𝑖1 = 1, 𝑖2 = 0 ↔ 𝑟𝑖,𝑗 < 𝑎

𝑖1 = 0, 𝑖2 = 1 ↔ 𝑟𝑖,𝑗 ≥ 𝑎

𝑗 = 1,2, … , 𝑁𝑖,𝑖≠𝑗

 (12) 

 

where FJ is the resultant force acting on the jth CP and N is the number of CPs. The charged 

magnitude value of each CP is determined based on the quality of its solutions as follows: 

 

𝑞𝑖 =
𝑓𝑖𝑡(𝑖) − 𝑓𝑖𝑡𝑤𝑜𝑟𝑠𝑡

𝑓𝑖𝑡𝑏𝑒𝑠𝑡 − 𝑓𝑖𝑡𝑤𝑜𝑟𝑠𝑡
                       𝑖 = 1,2, … , 𝑁 (13) 

 

where fitbest and fitworst  are the best and worst fitness of all the particles, respectively; 

fit(i) presents the ith agent fitness and N is the total number of CPs. The separation distance 

rij between two charged particles is defined as follows: 

 

𝑟𝑖𝑗 =
‖𝑋𝑖 − 𝑋𝑗‖

‖
𝑥𝑖 + 𝑥𝑗

2
− 𝑋𝑏𝑒𝑠𝑡‖ + 𝜀

 (14) 

 

where Xi , Xj are respectively the positions of the ith and jth CPs; Xbest is the best current CP 

location and 𝜀 is a small positive number. The probability of moving each CP toward the 

others, pi,j, is determined as follows: 

 

𝑝𝑖,𝑗 = {1                           
𝑓𝑖𝑡(𝑖) − 𝑓𝑖𝑡𝑏𝑒𝑠𝑡

𝑓𝑖𝑡(𝑗) − 𝑓𝑖𝑡(𝑖)
> 𝑟𝑎𝑛𝑑^𝑓𝑖𝑡(𝑗) < 𝑓𝑖𝑡(𝑖)

0                                                   𝑒𝑙𝑠𝑒                                              

      (15) 

 

where rand represents a random number. 

At the next step of the algorithm, solution construction, the new position and velocity of 
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each CP is obtained using the following function: 

 
𝑋𝑗,𝑛𝑒𝑤 = 𝑟𝑎𝑛𝑑𝑗,1. 𝑘𝑎. 𝐹𝑗 + 𝑟𝑎𝑛𝑑𝑗,2. 𝑘𝑣 . 𝑉𝑗,𝑜𝑙𝑑 . ∆𝑡 + 𝑋𝑗,𝑜𝑙𝑑 (16) 

𝑉𝑗,𝑛𝑒𝑤 = 𝑋𝑗,𝑛𝑒𝑤 − 𝑋𝑗,𝑜𝑙𝑑  (17) 

 

where ka is the acceleration coefficient; kv is the velocity coefficient to control the influence 

of the previous velocity; randj,1 and randj,1 are two random numbers uniformly distributed in 

the range of (0, 1); Ka and Kv are defined as: 

 

𝐾𝑎 = 0.5 × (1 +
𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟𝑚𝑎𝑥

) , 𝐾𝑣 = 0.5 × (1 −
𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟𝑚𝑎𝑥

) (18) 

 

where iter is the iteration number and itermax is the maximum number of iterations. If a new 

CP exits from the allowable search space, a harmony search-based handling approach is 

applied to correct its position. Also, if some new CP vectors are better than the worst ones in 

the CM, these are replaced by the worst ones in the CM. This is the updating stage. The 

algorithm is repeated until a termination criterion is satisfied. 

 

 

6. NUMERICAL EXAMPLE 
 

In this section, using simple rectangular grid graphs the robustness of the methodology is 

demonstrated. In this example, an open and a closed thin-walled section under transverse 

loading are optimized for minimum mass (first objective) and maximum elastic section 

modulus (second objective). The geometric data and constraints are given in the following: 

 Wall thickness: t = 1 mm 

 Maximum cross-sectional height: 50 mm. 

 Maximum cross-sectional width: 50 mm. 

 Maximum ratio of flat width to wall thickness, b/t : 250 

 Minimum resolution (accuracy): ε = 1 mm 

 Closed sections are doubly-symmetric and open sections are singly symmetric  

The material properties and the strength constraint are as follows: 

 Elastic modulus: 200 GPa 

 Yield stress: 300 MPa 

 Poisson’s ratio: 0.3 

 Minimum transverse shear yield strength: 15 kN  

 Minimum section flexural strength: 0.25 kN.m 

The present bi-objective optimization problems are summarized in Table 3. 

Since the optimum sections are assumed to be doubly-symmetric for the closed section 

and mono-symmetric for the open section, only a quarter of the section for the closed cross-

section problem and half of the section for the open section are modelled. The construction 

graph for the closed section problem is 25 mm by 25 mm (including 676 nodes), and for the 

open section problem is 50 mm by 25 mm (including 1326 nodes).  
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Table 3: Shape optimization formulation 

 

Shape Optimization Problem 

Open Cross-sections Closed Cross-sections 

Objective 

Function 

 𝑚𝑖𝑛  𝑓𝑃 = (𝐿(𝑃𝑖), 1/𝑆𝑓𝑖 )                   𝑓𝛤 = (𝐿(𝛤𝑖), 1/𝑆𝑓𝑖  ) 

→ 𝒎𝒊𝒏   𝑓 =

(∑ 𝑐𝑖𝑗
1

𝑖,𝑗∈𝑉 𝑒𝑖𝑗, ∑ 𝑐𝑖𝑗
2

𝑖,𝑗∈𝑉 𝑒𝑖𝑗) 

→ 𝒎𝒊𝒏   𝑓 =
1

|𝛤|
 (∑ 𝑐𝑖𝑗

1
𝑖,𝑗∈𝑉 𝑒𝑖𝑗 , ∑ 𝑐𝑖𝑗

2
𝑖,𝑗∈𝑉 𝑒𝑖𝑗  ) 

Behavioral 

Constraints 

 𝑒𝑖𝑗 ∈ 𝐸 ∶     𝑒𝑖𝑗  =  {
1               𝑖𝑓 𝐸𝑑𝑔𝑒 𝑒𝑖𝑗 𝑖𝑠 𝑐ℎ𝑜𝑠𝑒𝑛 

0       𝑖𝑓 𝐸𝑑𝑔𝑒 𝑒𝑖𝑗  𝑖𝑠 𝑛𝑜𝑡 𝑐ℎ𝑜𝑠𝑒𝑛 
 

 𝑖 ∈ 𝑁 − {𝑠, 𝑡}:     ∑ 𝑒𝑖𝑗

𝑗

− ∑ 𝑒𝑘𝑖

𝑘

= 0 
 𝑖 ∈ 𝑁:     ∑ 𝑒𝑖𝑗

𝑗

− ∑ 𝑒𝑘𝑖

𝑘

= 0  𝑖, 𝑗 ∈ 𝑁:     ∑ 𝑒𝑠𝑖

𝑖

− ∑ 𝑒𝑗𝑠

𝑗

= 1 

 𝑖, 𝑗 ∈ 𝑁:     ∑ 𝑒𝑖𝑡

𝑖

− ∑ 𝑒𝑡𝑗

𝑗

= 1 

Strength 

Constraints 
𝑆𝑣𝑚𝑖𝑛

≥ 12 𝑘𝑁 

Geometric 

Constraints 
𝑏/𝑡 ≤ 250 

 

The termination criterion for this problem is met when the improvement in the solution 

quality is less than 0.02% after ten consecutive iterations. The optimum shapes are a Pareto 

optimal containing the best-so-far solutions. Figs. 2 and 3 show the three best “optimum” 

shapes (i.e. the first three members of the Pareto-optimal set) for a quarter of the closed 

section and one half of the open section, respectively. 
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Figure 2. The three best Pareto-optimal solutions for the closed section 

 

In order to accentuate the difference between the obtained open sections, Fig. 3 has been 

drawn by moving all the sections towards the y axis so that the starting and ending points lie 

on the x and y axes, respectively. The paths are therefore not exactly the paths chosen by 

CSS particles, but are the equivalent paths having the same characteristics. 

 

 
Figure 3. The three best Pareto-optimal solutions for the open section 
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7. CONCLUSION 
 

Graph theory methods can be easily formulated for a wide range of structural problems, as 

they have benefitted greatly from interaction with other fields of mathematics. This paper 

has demonstrated the applications of such algorithms to the shape optimizations of thin-

walled steel sections. The shape optimizations of thin-walled steel sections are presented 

using graph theory approach. The shape optimization of open sections is treated as a multi-

objective all-pairs shortest path problem, while that of closed sections is treated as a multi-

objective minimum mean cycle problem. CSS algorithm, as a robust meta-heuristics for 

solving large combinatorial optimization is employed to solve the problems arising from the 

graph theory approach. The presented method is able to explore the entire solution space of 

thin-walled steel sections under any loading conditions, without being confined to 

predetermined cross-sectional shapes. It was demonstrated that the combination of the graph 

theory methods and the CSS algorithms can offer an effective method for shape 

optimizations of thin-walled steel sections with multiple conflicting objectives of mass 

minimization and strength maximization, as well as accounting for the geometric and 

strength constraints. 
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