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ABSTRACT 

 

Shear wave velocity (Vs) is known as one of the fundamental material parameters which is 

useful in dynamic analysis. It is especially used to determine the dynamic shear modulus of 

the soil layers. Nowadays, several empirical equations have been presented to estimate the 

shear wave velocity based on the results from Standard Penetration Test (SPT) and soil type. 

Most of these equations result in different estimation of Vs for the same soils. In some cases 

a divergence of up to 100% has been reported. In the following study, having used the field 

study results of Urmia City and Artificial Neural Networks, a new correlation between Vs 

and several simple geotechnical parameters (i.e. Modified SPT value number (N60), 

Effective overburden stress, percentage of passing from Sieve #200 (Fc), plastic modulus 

(PI) and mean grain size (d50)) is presented. Using sensitivity analysis it is been shown that 

the effect of PI in Vs prediction is more than that of N60 in over consolidated clays. It is also 

observed that Fc has a high influence on evaluation of shear wave velocity of silty soils. 
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1. INTRODUCTION 
 

Maximum shear modulus (Gmax) and shear wave velocity (Vs) are two essential parameters 

employed to perform dynamic analysis. Shear modulus of the soil highly depends on strain 

levels. Maximum shear modulus is the equivalent term for the shear modulus of a soil when 

undergoes strain levels equal or less than 10-3. Having been determined, Gmax can be used to 

obtain shear modulus of any soil for different strain levels by using the G/Gmax plots. Vs and 

Gmax are used in soil classification, liquefaction potential and soil-structure interaction 

analysis [1]. 
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Vs is generally determined by seismic field measurements. Since these field experiments 

are performed in low strain levels, the results of these experiments can be used to determine 

Gmax. Given the unit mass and Vs of a soil, Gmax can be obtained using the following 

equation: 

 

2
max  sG V

 
(1) 

 

VS and Gmax are obtained by low strain laboratory measurements on undisturbed soil 

samples. Resonant column tests and bending element experiments are common laboratory 

tests for determination of low strain parameters. Cyclic triaxial apparatus combined with 

exact measurement of axial strains has also been used for this purpose. 

Soil shear wave velocity can be also measured using geophysical methods such as Cross-

Hole (CHT), Down-Hole (DHT), seismic cone penetration tests (SCPTs), Micro-tremor, 

wave propagation analysis at several stations (MASW) and spectral analysis of surface 

waves (SASW). 

The effect of sampling disturbance on stiffness of samples is remarkable for low strain 

laboratory tests in which the weak boundaries between soil particles were broken during the 

process of sampling. Thus, undisturbed soil sampling on coarse material is not possible 

unless expensive freezing methods are used [2]. 

Compared to laboratory methods, the most important advantage of field measurement 

methods is that they naturally cause less disturbance on soil. However, various limitations 

such as space limitations, cost considerations, high noise levels (which is important in urban 

areas), leave these methods impractical. 

Although exact determination of soil shear wave velocity using aforementioned methods 

is possible, they are generally expensive and in some of the projects may not be 

economically reasonable. Thus, the general trend is to determine the amount of Vs using 

indirect methods. 

Many efforts have been recently made by researchers to develop new relations between 

the shear wave velocity of soil and geotechnical parameters. Recent studies focused on 

finding relationship between Vs and parameters like SPT, effective overburden stress, the 

percentage of fine grains, depth and tip resistance in cone penetration test [3-6]. 

Several studies revealed that effective overburden stress and porosity play a pivotal role 

in magnitude of Gmax. Geological age also has an important influence on estimation of Gmax. 

Pre-consolidation ratio of the soil, on the other hand, has a little effect on Gmax. There are 

different opinions about effects of Plasticity Index (PI) on maximum shear modulus of the 

soil. Some of the studies show direct relationship between Gmax and PI variations and some 

of them revealed reverse relationship [7]. 

Hardin and Drnevich [8] showed that Gmax and Vs are firstly dependent on unit weight, 

porosity and effective stress. Soil type, age and cementation imposea little effect on these 

parameters. 

Dobry and Vucetic [9] showed that with an increase in vertical effective stress, age, 

cementation and pre-consolidation value, Vs also increases. A reverse relationship governs 

the correlation between Vs and porosity. 

In the following study, using the field measurements of Urmia City, it is tried to find a 



ANN FOR CORRELATION BETWEEN SHEAR WAVE VELOCITY OF SOIL AND … 

 

457 

correlation between shear wave velocity and SPT number (N60), effective overburden 

pressure (σ´), fine grain percentage (Fc), Plasticity Index (PI) and average grading size (d50). 

In order to perform the analysis, artificial neural network is used. Using sensitivity analysis, 

effect of each parameter on Vs is also evaluated. 

 

 

2. REVIEW OF THE PROPOSED RELATIONSHIP 
 

Several correlation relationships have been presented to correlate SPT and Vs. The initial 

relationships were based on field data which use SPT number value (N). This value should 

be modified in order to consider the energy, length of the probe and internal diameter of the 

sampler. 

Different methods have been used to measure Vs which includes Cross-Hole test (CHT), 

Down-Hole test (DHT), seismic cone penetration tests (SCPTs) and spectral analysis of 

surface waves (SASW). SASW, for instance, employs short frequencies to measure shear 

wave velocity. The result of such an experiment is mean velocity for a large volume of soil. 

CHT and DHT, on the other hand, use high frequency waves which results in the mean 

velocity of a small volume of soil and thus, provide high resolution results equal to results of 

laboratory scale tests. 

Most of the common functions in recent studies are in the form of Vs=A.NB, where A and 

B are obtained by statistical regression of a set of data. The value of N is not corrected for 

overburden pressure but is modified for the energy, length of the probe and internal diameter 

of the sampler. Table 1 represents some of the important correlation relationships for 

different soil types. 

Seed and Idriss [11] presented equation that correlates shear wave velocity to SPT 

number corrected for depth of soil. Seed et al. [12] also presented a correlation for Vs and 

SPT number based on equations presented for Gmax. 

Using statistical analysis, Lee [14] presented different combinations of regression models 

based on SPT number, depth, Effective stress and type of soil. 

 
Table 1: Empirical relationships for soil shear wave velocity (Vs) estimation based on SPT 

number (N) 

References 
Soil type 

All Sand Clay Silt 

1 Imai [10] Vs=91N 
0.337

 Vs=80.6N
0.331

 Vs=102N
0.292

 
 

2 Seed and Idriss [11] Vs=61.4N 
0.5

 
   

3 Seed et al. [12] 
 

Vs=56.4N 
0.5

 
  

4 Jinan [13] 
Vs=116(N+.318)

0.202
 

   
Vs=90.9(D+.62)

0.212
 

   

5 Lee [14]  
Vs=57.4N 

0.49
 Vs=114.4D 

0.31
 Vs=105.6D 

0.32
 

 
Vs=57.4D 

0.46
 

  
6 Iyisan [3] Vs=51.5N 

0.516
 

   

7 
Hasançebi and 

Ulusay [4] 
Vs=90N 

0.309
 Vs=90.82N

0.319
 Vs=97.89N

0.269
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8 
Anbazhagan and 

Sitharam [15] 
Vs=78N1,60 

0.4
    

9 Dikmen [5] Vs=58N 
0.39 

Vs=73N
0.33

 Vs=44N
0.48

  

10 Brandenberg et al. [6] Ln (Vs)ij = β₀ + β₁ Ln (N60)ij + β₂ Ln ( ϭ’)ij 

11 Kuo et al. [16] Vs=114N 
0.56

D
0.168

 

aThe unit for D is foot 

b The units for D and Vs are foot and meter per second 

cβ is presented for different types of soils by Brandenberg et al. (2010) 

 

Iyisan [3] proposed several equations for Vs and represented an evaluation for the effect 

of several parameters such as SPT number (N), vertical effective stress (σ´), mean grain 

diameter d50, modified SPT number (N1-60), tip resistance in cone penetration test (qc) and 

depth of the sedimentary layer (H) on shear wave velocity of the soil.  

Hasançebi and Ulusay [4] presented several correlation relations by using 97 sets of data 

gathered from North West of Turkey. They obtained different equation for clayey and sandy 

soils. Using datasets gathered from seismic micro zonation studies in India, Anbazhagan and 

Sitharam [15] presented an equation to determine shear wave velocity of the soil based on 

Modified standard penetration test (N1-60). 

Using statistical regression analysis, Brandenburg et al. [6] presented an equation to 

estimate Vs for soils under Caltrans bridges. They gathered datasets from 79 logs in 21 

bridges and express Ln (Vs) as a function of SPT number, overburden effective stress for 

sandy, silty and clayey soils. 

Using datasets gathered from Taiwan, Kuo et al. [16] presented an equations to determine 

Vs based on SPT number and depth of the sample. Using datasets from different zones of the 

word and employing polynomial neural networks, Ghorbani et al. [2] presented the 

following equation to evaluate shear wave velocity: 
 

2 3

2 2
2 3 2 3

3.02 1.8839 0.9307

0.33683 0.35324 0.68995

sV Y Y

Y Y Y Y

   

 
 (2) 

 

where: 

 

3 1
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1 1

2
2 1 60 1

2
1 60 1 1 60

2
1 1 60 1 60

2
1 60

 157.27 1.184 3.3944

0.00198 0.00891 0.0086

 1.62 0.935 1 0.551 0.00036
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0.00052 0.00204
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3. NEURAL NETWORKS 
 

Neural Network is one of the major branches in artificial intelligence. Neural network is a 

data analysis system based on a mathematical model of the human brain's nerve fibers. 

Neural network is primarily trained with processing large data sets. Based on a proper 

training, neural networks are able to provide fairly accurate output for a data set. A network 

has three main parts: the transition function, the network structure and the learning law, that 

are defined separately based on type of the defined problem [17]. 

Generally, the Multilayer Perceptron Neural Network (MLPNN) is a common network 

for engineering purposes. However, other Neural Networks such as GRNN and RBFNN are 

used to solve various problems. 

The performance of a neural network is evaluated by correlation coefficient (r), mean 

absolute error (MAE) and root mean square error (RMSE). The correlation coefficient is 

expressed as follows: 

 

1

2 2

1 1

( )( )

( ) ( )

n

i i

i

n n

i i

i i

O O T T

r

O O T T



 

 



 



 
 (3) 

 

The mean absolute error and root mean square error are defined as follows: 
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(5) 

 

where Ti and Oi are the target output and the output calculated by the neural network, 

respectively. 

 

 

4. MULTILAYER PERCEPTRON NEURAL NETWORKS (MLPNN) 
 

In a MLPN networks, input data are linked to weights matrix from the first layer that in turn 

has been linked to second layer weights matrix as well. The weights matrix from the hidden 

layer is linked to the output layer data. Hidden layers are defined as a black box that 

modifies input data to obtain output data. Standard BP is a gradient descent algorithm, in 

which the network weights are moved along the negative of the gradient of the performance 

function. There are a number of variations on the basic algorithm that are based on other 

standard optimization techniques. In this study, Levenberg-Marquardt (LM) [18] algorithm 
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is employed. The basic BP algorithm adjusts the weights in the steepest descent direction.  
 

 

5. RBF NEURAL NETWORKS 
 

RBF neural networks are widely used in the field of structural engineering due to their fast 

training, generality and simplicity. RBF neural networks are two layers feed forward 

networks. The hidden layer consists of RBF neurons with Gaussian activation functions. The 

outputs of RBF neurons have significant responses to the inputs only over a range of values 

of input data called the receptive field.  

The numerical results of many scientific and engineering applications indicate that RBF 

networks are very good tools for interpolation and also their training is very fast. 

 

 

6. GENERALIZED REGRESSION NEURAL NETWORKS 
 

Generalized Regression Neural Network (GRNN) is developed by Specht which falls in the 

category of radial neural networks [19]. This network consists of four layers; 1- the input 

layer, 2-pattern layer, 3- summation layer and 4- output layer. Parameters such as learning 

rate and momentum is not required for this type of neural networks. GRNN networks have 

decent performance for discrete and continuous data collection, and the rate of training 

process is relatively high.  

 

 

7. DATA DIVISION 
 

In this study, a total of 191 data sets are used which are collected from field studies in Urmia 

City. Table 2 shows some of the statistical indices for datasets. As it is seen from Table 2, 

the rang for N60, σ', Fc, PI, d50 and Vs, are 8-66, 21.8-331.6, 0-0.98, 0-27.7, 0-5, 82-566, 

respectively.  
 

Table 2: Some of the statistical indices for data sets 

variable max min mean std 

N60 66 8 30.14 11.91 

σ´(kPa) 331.6 21.80 101.73 70.56 

Fc 0.98 0 0.8 0.21 

PI 27.7 0 4.78 8.02 

d₅₀(mm) 5 0 0.34 1.29 

Vs(m/s) 566 82 375.12 117.37 

 

There are several ways for data division. In random data division sometimes some of the 

test data are missed in training process and there might be an inconsistency between training 

and test data.  
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The effect of four different type of data classification in results of neural network model 

is studied by Shahin et al. [20]. Corresponding neural network was designed to evaluate the 

settlements of shallow foundations on granular soils. The four division methods were: 1- 

random data division, 2- Statistical Classification, 3- Self-organized mapping (SOM) and 4- 

Fuzzy clustering. 

The results showed that similarity of statistical characteristics of the training and testing 

datasets has a remarkable impact on the results obtained from artificial neural network. The 

results also showed that comparing to other methods, the fuzzy clustering method is more 

effective in optimum performance of artificial neural networks. To achieve the accurate 

results, Fuzzy clustering is also used in this study for data clustering. 

Datasets are clustered into 16 subsets by using subtractive fuzzy clustering method with 

effect (Subtractive Clustering) and with a radius of influence equal to 0.4. Then, 155 (80%) 

and 36 (20%) of data sets are used for training and test, respectively. The software 

MATLAB 8 (R2012b) [21] is used for data clustering and artificial neural network training. 

 

 

8. SENSITIVITY ANALYSIS 
 

Using a complicated process, ANN works as a black box that correlates the input data to the 

outputs. Instant understanding of the determination process for network weights and neuron 

values of hidden layers of datasets is not possible. Therefore, in a neural network analysis 

quick perception of the impacts of each independent variable on dependent one is not easily 

possible [22]. Different methods have been proposed to describe the operation of neural 

networks including input neurons, hidden-layers neurons and output neurons. These 

methods combined with neural networks and sensitivity analysis is performed using the 

following two methods: 

1) Analysis based on weight values 

2) Sensitivity analysis method (PaD) 

Different empirical studies have shown that analysis based on weight values is not 

efficient to determine the effect of input variables on the output variables [23]. In the present 

study, the PaD method is used to perform sensitivity analysis. 

 

 

9. PARTIAL DERIVATION METHOD (PAD) 
 

Two important results are obtained by using PaD method: 1- Output variables profile for 

partial changes of each input variable and 2- classification of the relative impact of each 

variable on neural network outputs. To obtain the output variables profile with respect to 

small changes of input variable, one can calculate the partial differential of ANN output with 

respect to inputs. PaD method produce more stable results comparing to other methods (e.g. 

weights method) [23]. 

PaD method depend on the input xi, the output yk, the connection weights between inputs 

and hidden modes wij, the connection weights between hidden and output nodes ujk, and the 

activation function. 

Sensitivity analysis for neural networks is expressed as follows: 
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1

( ) ( )
n
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k jk j ij
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(6) 

 

where ( )kf net  and ( )jf net  are the derivatives of the activation function of hidden nodes 

andoutput nodes, respectively. In PaD method, the relative importance of each input variable 

with respect to network output is calculated by SSD index defined as follows: 
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(7) 

 

This sensitivity is calculated for each taken sample from model database (records) and n-

dimensional space of variables. SSD index indicates the relative importance of contribution 

of each input variable in calculating the output variable. The higher the value of SSD, the 

higher the effect of the variable in model outputs. 

 

 

10. RESULTS AND DISCUSSIONS 
 

Three multilayer perceptron neural network methods (e.g. MLP, RBF and GRNN) are used 

for training. For initial comparisons of the models and to evaluate them, a parameter called 

coefficient of correlation is used. This parameter is one of the most precise and widely used 

index in evaluation of neural networks performance. This index indicates the level of 

correlation between two variables.  

In next step, all networks that have a correlation higher than 90% are chosen and the 

other networks are removed. Table 3 and table 4 shows 4 MLP and 3 RBF and GRNN 

networks that have a correlation higher than 90%. Criterion such as R, MAE and RMSE are 

used to evaluate the performance of these 7 networks. As it is shown, GRNN results in the 

lowest error and consequently best solution. This evaluation parameters are [R=0.99, 

MAE=9.52 m/s and RMSE= 16.27] and [R=0.95, MAE=27.71 m/s and RMSE= 37.25] for 

training set and testing set, respectively. Fig. 1 shows the graphs of correlation equations for 

Vs and N that are presented in Table 1. Although some of the graphs represent relatively 

appropriate fit, there is a large difference in the wide range of values of Vs obtained for an N 

value. Therefore, the exact percentages of differences that caused by the diversity of soil 

types, errors in field measurements and effects of disregarding the other parameters, 

remained unclear.  

 
Table 3: Specifications of successful MLP neural networks 

Number of 

network 

Training 

type 

Number of 

middle layers 

Number 

of neurons 
Activation function 

1 BP(trainbr) 1 50 tansig-tansig 

2 BP(trainbr) 1 40 tansig-purelin 

3 BP(trainbr) 2 30-30 tansig-tansig-tansig 

4 BP(trainlm) 2 50-50 tansig-tansig-tansig 
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Table 4: Specifications of successful RBF and GRNN neural networks 

Number of 

network 

Training 

type 
Spread 

Number 

of neurons 
Activation function 

5 RBF 0.16 155 radbas-purelin 

6 GRNN 0.25 155 tribas-purelin 

7 GRNN 0.11 155 radbas-purelin 

 
Table 5: Evaluation of successful neural networks 

Number of 

network 

R 

(train) 

R 

(test) 

MAE 

(train) 

RMSE 

(train) 

MAE 

(test) 

RMSE 

(test) 

1 0.97 0.9 21.05 29.24 39.01 52.52 

2 0.96 0.9 23.24 32.42 39.58 52.01 

3 0.94 0.9 31.04 40.06 40.39 51.08 

4 0.94 0.9 29.89 39.67 40.76 49.73 

5 0.99 0.93 3.38 7.60 30.77 43.16 

6 0.98 0.94 16.50 25.97 30.25 39.43 

7 0.99 0.95 9.52 16.27 27.71 37.25 

 

Fig. 2 represents the evaluation of the Vs-N correlation equations for two samples of 

boreholes. For comparison purposes some relationships that are only depth-dependent. This 

comparison shows that GRNN results in the most logical results which are very close to real 

values. 

 

 
Figure 1. Used data versus Empirical correlation relationships between Vs and N 
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Figure 2. Evaluation of Vs using the existing equations for borehole depths 
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Figure 3. The relative importance and contribution of the parameters, using PaD method and 

SSD parameter for (a) overconsolidated clay (b) normally consolidated clay and silt (c) sand  
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important factor for all type of soils and Fc is determinant factor for normally consolidated 

clays and silty soils. Therefore, in order to come up with an accurate estimation of Vs, in 

addition to N60, other geotechnical parameters should be considered. While recent studies 

proposed different relationships for each soil type, in this study a unique relationship was 

obtained for all soil types. 
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