دوره 5، شماره 1 - ( 10-1393 )                   جلد 5 شماره 1 صفحات 37-52 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Wang Y Y, Li L J. AN IMPROVED INTELLIGENT ALGORITHM BASED ON THE GROUP SEARCH ALGORITHM AND THE ARTIFICIAL FISH SWARM ALGORITHM. International Journal of Optimization in Civil Engineering. 2015; 5 (1) :37-52
URL: http://ijoce.iust.ac.ir/article-1-197-fa.html
AN IMPROVED INTELLIGENT ALGORITHM BASED ON THE GROUP SEARCH ALGORITHM AND THE ARTIFICIAL FISH SWARM ALGORITHM. دانشگاه علم و صنعت ایران. 1393; 5 (1) :37-52

URL: http://ijoce.iust.ac.ir/article-1-197-fa.html


چکیده:   (9152 مشاهده)
This article introduces two swarm intelligent algorithms, a group search optimizer (GSO) and an artificial fish swarm algorithm (AFSA). A single intelligent algorithm always has both merits in its specific formulation and deficiencies due to its inherent limitations. Therefore, we propose a mixture of these algorithms to create a new hybrid optimization algorithm known as the group search-artificial fish swarm algorithm (GS-AFSA). This algorithm has been applied to three different discrete truss optimization problems. The optimization results are compared with those obtained using the standard GSO, the AFSA and the quick group search optimizer (QGSO). The proposed GS-AFSA eliminated the shortcomings of GSO regarding falling into the local optimum by taking advantage of AFSA’s stable convergence characteristics and achieving a better convergence rate and convergence accuracy than the GSO and the AFSA. Furthermore, the GS-AFSA has a superior convergence accuracy compared to the QGSO, all while solving a complicated structural optimization problem containing numerous design variables.
متن کامل [PDF 157 kb]   (2153 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: Optimal design
دریافت: 1393/10/11 | پذیرش: 1393/10/11 | انتشار: 1393/10/11

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

کلیه حقوق این وب سایت متعلق به دانشگاه علم و صنعت ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2021 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb