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ABSTRACT 
 

The excavation damaged zone (EDZ) can be defined as a rock zone where the rock 

properties and conditions have been changed due to the processes related to an excavation. 

This zone affects the behavior of rock mass surrounding the construction that reduces the 

stability and safety factor and increase probability of failure of the structure. In this paper, a 

methodology was examined for computing the creation probability of damaged zone by 

Latin hypercube sampling based on a feed-forward artificial neural network (ANN) 

optimized by hybrid particle swarm optimization and genetic algorithm (HPSOGA). The 

HPSOGA was carried out to decide the initial weights of the neural network. A case study in 

a test gallery of the Gotvand dam, Iran was carried out and creation probabilities of 0.191 for 

highly damaged zone (HDZ) and 0.502 for EDZ were obtained. 
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1. INTRODUCTION 
 

The most cost effective method for excavating underground spaces in massive hard rocks, 

where the uniaxial compressive strength very often exceeds 200 MPa, is drilling and blasting 

[1]. A very important concern often arises with this method: unwanted damage induced by 

blasting beyond the desired perimeter of the underground space. The significance and 
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importance of this damage have been addressed by various researches [1-4]. Perimeter 

blasting techniques such as smooth blasting [5] are commonly used to minimize this 

damage, complemented by theoretical blast damage tables and charts. Although these 

precautionary measures are taken, blast damage is still inevitable and the conceived 

consequences are evidenced in the form of increased support cost and requirements, 

reduction in tunnel life, unforeseen stability problems originating from blast damage, slow 

tunnel advance, and conduit for water flow. 

  In the last decades, in different engineering fields, various methods for reliability analysis 

have been developed to include uncertainties associated with material properties and geometry, 

loading and boundary conditions. There are three major methods to uncertainty analysis: 

interval analysis, fuzzy logic and probabilistic analysis (the most well developed methods) [6]. 

Methods using probability density functions are generally referred to as probabilistic methods. 

These methods produce the nominal value of the objective functions and constraints as well as 

their probability density functions. Monte Carlo simulation is the most basic, simplest approach 

among all probabilistic design methods, but on the other hand it is a very time consuming 

method [7]. To solve the problem of excessive number of samples required to perform a Monte 

Carlo simulation, there have been several other simulation techniques developed over the years. 

In general these techniques can be categorized under the general heading of "Variance 

Reduction Techniques" and divided into three basic classes: stratified sampling, importance or 

adaptive sampling and quasi- Monte Carlo simulation [7]. In general, these techniques can often 

reduce the number of simulations required by several orders of magnitude as compared to basic 

Monte Carlo simulation. Of the stratified sampling techniques, latin hypercube sampling (LHS) 

is arguably the most popular version [7]. The LHS is a technique for reducing the number of 

simulations needed to obtain reasonable results. Essentially, the LHS is the same as the Monte 

Carlo simulation except that the sampling process is more effective and leading to a better 

coverage of the sampling space with a smaller number of iterations [8]. In this paper, the LHS 

method is used to compute reliability of constraints in a reasonable time. By using the LHS, an 

estimate of the creation probability of damaged zone can be obtained. 

  Finding the creation probability of damaged zone can be led to a better understanding the 

risks of a project, a more efficient of establishing geotechnical zoning and the costs can be 

estimated with more reliability. Furthermore, it can be utilized for optimal designs of support 

pattern, blast pattern, and excavation method of underground spaces. 

  Moreover, over the years, the application of artificial neural network (ANN) in geotechnical 

engineering has been growing. In recent years, there is a growing interest of using ANNs to 

assist building a reasonable model structure for physical nonlinear systems [9]. ANNs have a 

special capacity to approximate the dynamics of nonlinear systems in many applications in a 

black box manner [10]. Given sufficient input-output data, ANN is able to approximate any 

continuous function to arbitrary accuracy [11]. In addition, several different attempts have been 

proposed by various researchers to propitiate this training problem. These include imposing 

constraints on the search space, adjusting training parameters,  restarting training at many 

random points, and restructuring the ANN structure [9]. One of the most promising techniques 

is by introducing adaptation of network training using hybrid particle swarm optimization and 

genetic algorithms (HPSOGA). Montana and Davis [12] reported the successful application of 

a GA to a relatively large ANN problem. They proved that GA produce results superior than 

back propagation (BP). 
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  In this paper, a new methodology is introduced to determine the creation probability of 

damaged zone an underground structure by the LHS based on the ANN-HPSOGA model. 

Based upon the results of plate loading test and using the LHS based on the ANN-HPSOGA 

model, samples of data were generated. Using the data generated, the creation probability of 

damaged zone can be estimated. To show the ability of the methodology proposed, field data 

from a test gallery of the Gotvand dam, Iran were used. According to the authors’ knowledge, 

using the LHS based on the ANN-HPSOGA model for estimation of the creation probability of 

damaged zone around underground spaces is a unique research. 

 

 

2. A BRIEF REVIEW OF METHODS USED IN THIS STUDY 
 

2.1 Latin hypercube sampling 

latin hypercube sampling (LHS) was first proposed by McKay et al. [13] and has been 

further developed for different purposes by several researchers [14, 15]. The LHS provides a 

constrained sampling scheme instead of random sampling according to the direct Monte 

Carlo simulation. A comparison of random sampling with LHS for two variables is shown in 

Figure 1. In the LHS, the region is uniformly divided into N non-overlapping intervals for 

each random variable; where N is the number of random numbers, which need to be 

generated for each random variable. The N non-overlapping intervals are selected to be of 

the same probability of occurrence. Then, N different values in the N non-overlapping 

intervals are randomly selected for each random variable. This can be accomplished by 

initially generating N random numbers. These values represent the percentage position of 

each generated value of a variable within an interval [16]. Therefore, these values are 

linearly transformed to the random numbers in the non-overlapping intervals for each 

random variable using the following equation: 

 

 
( 1)

i

u i
u

N N


   (1) 

 

where, i=1,2,..,n; u=a random number; and ui = random number in the ith interval. From Eq. (1), 

it is quite obvious that there is only one generated value that is randomly selected within each of 

the N intervals for each random variable. This is due to the following relationship: 
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where, (i - 1)/N and i/N are lower and upper bounds for the ith interval. Then n values obtained 

for x1 (the first random variable) are paired in a random manner (equally likely combination) 

with the n values of x2 (the second random variable). These n pairs of (x1,x2) are combined in a 

random manner with the n values of x3 (the third random variable) to form the first n-triplets 

(x1,x2, x3), and so on, until the (k-2)th n-triplets (x1,x2, xn-2, xn-1, xn) (k = number of random 

variables) are formed. Thus, an N × k matrix is formed [16]. 
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Figure 1. A Comparison of random sampling with the LHS for two variables 

 

  About the LHS, it can be said that a reliability problem is normally formulated, using a 

failure function,
1 2( , ,..., )ng x x x  where, 1 2, ,..., nx x x are random variables. Violation of the 

limit state is defined by the condition 1 2( , ,..., ) 0ng x x x   and the probability of damage,
fp , 

is expressed by the following expression [17]: 
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where, 1 2( , ,..., )nx x x  are values of the random variables and 
1 2, ,..., 1 2( , ,..., )

nx x x nf x x x  is 

the joint probability density function. The limit state function, also called performance function, 

define the boundary between the safe and failure regions in the design parameter space. This 

function plays an important role in the development of reliability analysis methods. Figure 2 

shows the concept of limit state function. 

The LHS allows the determination of an estimate of the probability of damage, given by: 
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where, 
1 2( , ,..., )nI x x x  is a function defined by: 
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  According to Eq. (4), N independent sets of values 
1 2, ,..., nx x x  are obtained based on the 

probability distribution for each random variable and the failure function is computed for each 

sample. Using the LHS, an estimate of the probability of structural failure is obtained by: 

 



USING LATIN HYPERCUBE SAMPLING BASED ON THE ANN-HPSOGA... 

 

393 

 f
f

N
p

N
  (6) 

 

where, N is the total number of samples, and fN is the number of samples locating at the failure 

region where, 1 2( , ,..., ) 0ng x x x  . 

 

 
Figure 2. The concept of limit state function 

 

 2.2 Artificial neural network  

Artificial neural networks (ANNs) are parallel information processing methods that can express 

complex and nonlinear relationship use, number of input-output training patterns from the 

experimental data. ANNs provide a nonlinear mapping between inputs and outputs by its 

intrinsic ability [18]. The success in obtaining a reliable and robust network strongly depends 

on the correct data preprocessing, correct network training choice, and correct architecture 

selection [19]. The most common neural network architecture is the feed-forward neural 

network. Feed-forward neural network is the network structure in which the information or 

signals will propagates only in one direction, from input to output [18, 20]. The network is 

trained by performing optimization of weights for each node interconnection and bias terms, 

until the values output at the output layer neurons are as close as possible to the actual outputs 

[21]. 

  The data are split into two sets, a training data set and a validating data set. The model is 

produced using only the training data. The validating data are used to estimate the accuracy of 

the model performance. In training a network, the objective is to find an optimum set of 

weights [21]. When the number of weights is higher than the number of available data, the error 

in-fitting the non trained data initially decreases but then increases as the network becomes 

over-trained. In contrast, when the number of weights is smaller than the number of data, the 

over-fitting problem is not crucial [21]. 

In the last years, ANN technology, a sub-field of artificial intelligence, are being used to 

solve a wide variety of problems [22-26]. 

 

2.3 Genetic algorithm 

The genetic algorithm (GA) is a frequently and well-known used evolutionary computation 

http://link.springer.com/article/10.1007/s00521-012-0955-9
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technique. This method was originally developed by John Holland [27] and Hassan et al. [28]. 

The idea was inspired from Darwin’s natural selection theorem that is based on the idea of the 

survival of the fittest. It uses the principles of genetics and evolution and mimics the 

reproduction behavior observed in biological populations. In the GA, a candidate solution for a 

particular problem is called an individual or a chromosome and consists of a linear list of genes. 

The search in the GA begins from a randomly generated population of designs that evolve over 

successive generations (iterations), eliminating the need for a user supplied starting point [28]. 

To perform its optimization like process, the GA employs three operators to propagate its 

population from one generation to another. The first operator is the "selection" operator in 

which the GA takes into account the principal of "survival of the fittest" to select and generate 

individuals (design solutions) that are adapted to their environment. The second operator is the 

"crossover" operator, which mimics mating in biological populations. The crossover operator 

propagates features of good surviving designs from the current population into the future 

population, which will have a better fitness value on average. The last operator is "mutation", 

which promotes diversity in population characteristics. The mutation operator allows for global 

search of the design space and prevents the algorithm from getting trapped in local minima 

[28]. 

 

2.4 Particle swarm optimization 

The particle swarm optimization (PSO) is one of the recent evolutionary optimization 

methods. This technique was originally presented by Kennedy and Eberhart [29] in order to 

solve problems with continuous search space. The PSO is based on the metaphor of 

communication and social interaction, such as fish schooling and bird flocking. The PSO is 

similar to the GA in many common points. It performs the search using a population of 

particles that correspond to individuals in the GA. Both algorithms start with a randomly 

generated population. The PSO does not have a direct recombination operator. However, the 

stochastic acceleration of a particle toward its previous best position, as well as toward the 

best particle of the swarm, resembles the recombination procedure in evolutionary 

computation [30]. In comparison to the GA, the PSO has some attractive characteristics. It 

has memory, thus the knowledge of good solutions is retained by all particles, whereas in the 

GA, previous knowledge of the problem is destroyed once the population changes. The PSO 

does not use the filtering operation (such as selection in the GAs), and all the members of 

the population are maintained through the search procedure to share their information 

effectively. The PSO uses social rules to search in the design space by controlling the 

trajectories of a set of independent particles. The position of each particle, xi, representing a 

particular solution of the problem, is used to compute the value of the fitness function to be 

optimized. Each particle may change its position and consequently may explore the solution 

space, simply varying its associated velocity. In fact, the main the PSO operator is the 

velocity update, which considers the best position, in terms of fitness value reached by all 

the particles during their paths, t

gP , and the best position that the agent itself has reached 

during its search, t

iP , resulting in a migration of the entire swarm toward the global 

optimum [31]. 

  At each iteration the particle moves around according to its velocity and position; the cost 

function to be optimized is evaluated for each particle in order to rank the current location. The 

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=488968
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position of each particle is updated using its velocity vector as shown in Eq. (8) and depicted in 

Figure 3. 

 

 
1

1 1 2 2( ) ( )t t t t t t t t

i i i i g iV V C r P X C r P X       (7) 

 

 1 1t t t

i i iX X V    (8) 

 

 
Figure 3. Depiction of the velocity and position updates in PSO (after [28]) 

 

where, t

iV is the velocity vector at iteration t, r1 and r2 represents random numbers in the range 

[0,1]; 
t

gP denotes the best ever particle position of particle i, and t

iP corresponds to the global 

best position in the swarm up to iteration t [30]. The remaining terms are problem-dependent 

parameters; for example, C1 and C2 represent "trust" parameters indicating how much 

confidence the current particle has in itself (C1: cognitive parameter) and how much confidence 

it has in the swarm (C2: social parameter), and ω is the inertia weight. The latter term plays an 

important role in the PSO convergence behavior since it is employed to control the exploration 

abilities of the swarm. It directly influences the current velocity, which in turn is based on the 

previous history of velocities. Large inertia weights allow for wide velocity updates providing 

the global exploration of the search space, while small inertia values concentrate the velocity 

updates to nearby regions of the design space [32]. 

 

2.5 Hybrid genetic algorithm and particle swarm optimization 

Although the GAs have been successfully applied to a wide range of problems, using the GAs 

for large-scale optimization could be very expensive due to its requirement of a large number of 

function evaluations for convergence. This would result in a prohibitive cost for computation of 

function evaluations even with the best computational facilities available today [33]. 

Considering the efficiency of the PSO and the compensatory property of the GA and the PSO, 

combining the searching abilities of both methods in one algorithm seems to be a logical 

approach. In this paper, the hybrid of the GA and the PSO named the HPSOGA, originally 

presented by Juang [34], was used. The flowchart of the HPSOGA is shown in Figure 4. 
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Figure 4. Flowchart of the HPSOGA 

 

 

3. EXCAVATION DAMAGE ZONE 
 

Excavation of an underground construction by drilling and blasting creates a zone of 

damaged rock around the structure. This zone affects the behavior of rock mass surrounding 

the construction (Figure 5), that reduces the stability and safety factor and increase 

probability of failure of the structure. Different definitions for the damaged or disturbed 

zone have been used. In this paper, the definitions of Tsang et al. [35] for excavation 

disturbed zone (EdZ), excavation damaged zone (EDZ) and highly damaged zone (HDZ) are 

adopted (Figure 6). 

 
Figure 5. Behavior of rock mass surrounding an underground construction 
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Figure 6. Zones around an underground construction 

 

 

4. SITE DESCRIPTIONS AND GEOLOGY OF CASE STUDY 
 

The Gotvand dam is located on the Karun river in the Khuzestan province, south west of Iran 

(Figure 7). This dam with 178 m height and 730 m length of embankment, regulates the water 

of the Karun river, also serves power generation, flood control and irrigation needs. 

 

 
Figure 7.  Location of Gotvand dam 

 

The geology of area is mainly including two formations; Bakhtiary (BK) and Aghajari (AJ). 

The BK formation consists of conglomerate, cherty limestone and inter bedded mudstones 

and sandstone. The AJ formation contains 2 to 5 m thick layers of gray and greenish gray 

sandstones, inter bedded claystone, siltstone and brow reddish marlstone. 

 

4.1 Determination of deformation modulus by plate loading test 

The creation of EDZ due to a blasting impact and stress redistribution after excavation 

causes significant changes on the mechanical and physical properties and hydraulic 

conductivity around an underground excavation. The modulus of deformation is an 

important parameter among geomechanical parameters that represents the behavior of rock 
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mass after excavation, which can be used for the assessment of EDZ. 

The plate loading test (PLT) is the most familiar in situ experiment in rock mass 

studying. It is generally performed in special test galleries or underground spaces excavated 

by conventional drill and blast, having a span of 2 m and a height of 2.5 m [36]. In the PLT, 

load is directly imposed on the wall of gallery, and the resultant displacement is measured 

on the loading point in rock. A cycle of loading and unloading (Figure 8) provides the load-

displacement curve, which is necessary to determine deformation modulus. 

 
Figure 8. Pressure-displacement curves obtained from the PLT [37] 

 

The recoverable displacement is used to evaluate the deformation modulus based on the 

theory of elasticity. Depending on the loading condition, the PLT can be classified into a 

flexible type and a rigid type. In this paper, the flexible PLT procedure suggested by the 

ISRM 1981 in which Boussinesq’s equation is applied in the interpretation of the PLT 

results is used. An illustration of a PLT site is shown in Figure 9. The PLT was carried out 

in a test gallery, excavated by drill and blast, at the Gotvand dam to determine deformation 

modulus for the assessment of EDZ. 

 

 
Figure 9. The set-up of PLT 
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5. RESEARCH METHODOLOGY 
 

In this paper, a new methodology is introduced to determine the creation probability of 

excavation damaged zone around an underground structure. A primary issue the creation 

probability of excavation damaged zone based on the ANN-HPSOGA model is how to generate 

the training samples. Since the relation function is not known explicitly and is complicated, to 

make a relation between input variables and output to generate random value for each variable, 

the ANN-HPSOGA model can be used. In this paper, based upon the results of the PLT from a 

test gallery of the Gotvand dam, Iran and using the LHS based on the ANN-HPSOGA model, 

samples of data were generated (Figure 10). By using the data generated, the creation 

probability of damaged zone can be estimated. 

 

 
Figure 10. Latin hypercube sampling based on the ANN-HPSOGA model 

 

5.1. Prediction of deformation modulus, using the ANN-HPSOGA model 

5.1.1 Tuning parameters for the GA and the PSO 

To develop an accurate ANN model, the training, and validation processes are the important 

steps. In the training process, a set of input-output patterns is repeated to the ANN. From that, 

weights of all the interconnections between neurons are adjusted until the specified input yields 

the desired output. Through these activities, the ANN learns the correct input-output response 

behavior. The model training stage includes choosing a criterion of fit (mean squared error) and 

an iterative search algorithm to find the network parameters that minimizes the criterion. 

Hybrid the GA with PSO (HPSOGA) was used in an effort to formalize a systematic approach 

to training the ANN, and to insure creation of a valid model. It was used to perform global 

search algorithms to update the weights and biases of neural network. The control parameters 

used for running the PSO and the GA are shown in Tables 1 and 2 respectively: 

 
Table 1: The control parameters used for running the PSO 

Parameter Value 

Number of population (swarm size) 50 

Number of generations 1000 

Personal learning coefficient 1.4962 

Global learning coefficient 1.4962 

Inertia weights 0.73 

Fitness Mean squared error 

 

http://onlinelibrary.wiley.com/doi/10.1002/9780470061596.risk0299/full
http://ww.journalamme.org/papers_cams05/143.pdf
http://onlinelibrary.wiley.com/doi/10.1002/9780470061596.risk0299/full
http://ww.journalamme.org/papers_cams05/143.pdf
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Table 2: The control parameters used for running the GA 

Parameter Value 

Number of population 50 

Number of generations 1000 

Crossover probability 0.7 

Mutation probability 0.2 

Selection function Ranking 

Fitness Mean squared error 

 

5.1.2 Network architecture  

Architecture of the ANN model includes type of network, number of input and output neurons, 

transfer function, number of hidden layers as well as number of hidden neurons. Generally, the 

input neurons and output neurons are problem specific [11]. In this paper, multi-input single-

output structure had been utilized; therefore, there will be only one output neuron. The 

architecture of the network is given in Table 3. 

 Also, it is important that the transfer function possesses the properties of differentiability and 

continuity. Generally, log sigmoid function is utilized in the hidden layer and the output 

generated has a value between 0 and 1 however, the linear transfer function is more suitable in 

output [11]. The equations for the log and linear transfer functions used in this work are shown 

in Eqs. (9) and (10): 

 

 
1

( )
1 exp( )

f x
x


 

 (9) 

 

 ( )f x x  (10) 

 

Table 3: The architecture of the network 

Parameter Value 

No. of input neurons 3 

No. of output neurons 1 

No. of hidden layers 2 

No. of neurons in first hidden layer 5 

No. of neurons in second hidden layer 4 

No. of training data sets 79 

No. of testing data sets 20 

 

5.1.3 Training and validation results 

In this paper, the ANN-HPSOGA model was used to predict deformation modulus, using 

MATLAB environment. Figure 11 shows the architecture of the ANN-HPSOGA model used. 

As it can be seen in Figure 11, X, Y and Z coordinates (location of installation extensometers 

from the portal of test gallery that in these points, displacements and modulus of deformations 

were obtained) were defined as input parameters into the ANN-HPSOGA model and the 
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deformation modulus as output. The model proposed was trained with 79 data sets collected 

from a test gallery in the Gotvand dam for training phase. A few samples of the training and 

testing data sets are shown in Tables 4 and 5 respectively. 

 

 
Figure 11. Architecture of the ANN-HPSOGA model 

 

  A comparison between predicted values of deformation modulus by the ANN-HPSOGA 

model and measured values for 79 data sets at training and testing phases is shown in Figure 12. 

As shown in Figure 12, the results of the ANN-HPSOGA model in comparison with actual data 

show a good precision of the ANN-HPSOGA model (see Table 7). It should be noted that the 

predicted and measured deformation modulus (Figure 12) represent normalized values that was 

calculated using the following equation: 

 

 min

max min

2( )
mod 1

( )

E E
Normalized deformation ulus

E E


 


 (11) 

 

where, Emin and Emax are the minimum and maximum deformation modulus of the data used in 

this study, respectively. 
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Figure 12. Comparison between measured and predicted deformation modulus a Training, b 

Testing 

 
Table 4: A few samples of the training data sets, the ANN-HPSOGA model 

No. 

Depth of extensometer in 

instrumentation hole 

(m) 

Input Output 

X (m) Y (m) Z (m) 
Deformation 

modulus (GPa) 

1 0.5 6 7.75 3 3.18 

2 1 6 8.25 3 6.48 

3 0.4 7.65 6 9 7.75 

4 1.2 8.45 6 9 14.9 

5 0.4 7.65 6 27 4.3 

6 0 6 7.25 9 2.11 

7 0.9 6 3.85 27 9.42 

8 2.3 9.55 6 3 24.95 

9 0.4 7.65 6 27 4.32 

10 0.5 6 4.25 9 3.33 

 

Table 5: A few samples for testing the ANN-HPSOGA model 

No. 
Depth of extensometer in  

instrumentation hole (m) 

Input Output 

X (m) Y (m) Z (m) 
Deformation 

modulus (GPa) 

1 0 6 7.25 3 0.955 

2 0.6 4.15 6 3 9.274 

3 0.9 6 3.85 3 2.55 

4 0.5 6 7.75 27 3.829 

5 1.2 3.55 6 27 9.66 

 

Also, performance prediction of the predictive model proposed was evaluated, using coefficient 

of determination (R2), mean squared error (MSE), root mean square error (RMSE), median 

absolute error (MEDAE) and variance account for (VAF) (Table 6) where, N is the number of 

samples, var denotes the variance, y and y' are the measured and predicted values, respectively. 
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Table 6: Statistical indicators 

Statistical indicator Equation 

Mean squared error 
2

1

1
( )

N

i

MSE y y
N 

   

Root mean square error 
2

1

1
( )

N

i

RMSE y y
N 

 

 

Median absolute error 
MEDAE =median ( )y y 

 

Variance account for 
var( )

1
var( )

y y
VAF

y

 
  
 

 

 

  Performance analysis of the ANN-HPSOGA model for predicting deformation modulus is 

shown in Table 7. 

 
Table 7: Performance of the model for predicting deformation modulus 

Description R2 MSE RMSE MEDAE VAF 

Training data 0.92 0.02 0.16 0.02 90.98 

Testing data 0.87 0.08 0.27 0.08 73.88 

 

  The performance indices obtained in Table 7 indicate the high performance of the ANN-

HPSOGA model that can be used successfully for the prediction of deformation modulus. 

Furthermore, correlation between measured and predicted values of deformation modulus for 

training and testing phases are shown in Figure 13. 
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Figure 13. Correlation between measured and predicted values of deformation modulus a 

Training, b Testing 

 

5.2 Estimation of the creation probability of damaged zone  

The actual modulus of deformation for rock mass in the Gotvand dam is 5.8 GPa [38]. Also, a 

threshold of less than 2 GPa was chosen to recognize the HDZ, which is a part of EDZ and a 

threshold of less than 5 GPa was chosen to recognize the EDZ. Therefore, limit state function 

was defined for EDZ as E<5 GPa (Figure 14) and HDZ as E<2 GPa. 

 

 
Figure 14. Limit state function defined for the EDZ 

 

  To assess the probability of creation of EDZ and HDZ, the LHS based on ANN-

HPSOGA model was used. The creation probability of damaged zone can be estimated as the 

ratio of the number of samples locating at the damaged region (HDZ, EDZ) (Nf) to the total 

number of samples generated (N) [Eq. (6)]. To check the convergence of the LHS, the 

probability of creation was calculated with 13 different values of N. The results obtained, listed 

in Table 8, indicate that the LHS with 30×104 samples (the number of sample points in the HDZ 

and the EDZ is 57182 and 150721 respectively) was converged and the probability of creation 

http://onlinelibrary.wiley.com/doi/10.1002/9780470061596.risk0299/full
http://ww.journalamme.org/papers_cams05/143.pdf
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achieved for the HDZ and the EDZ are 0.191 and 0.502 respectively. A few samples of data 

generated, using the LHS based on the ANN-HPSOGA model is listed in Table 9. 

 
Table 8: The creation probability of damaged zone for 13 different values of N 

N 
Nf 

HDZ (E < 2) 

Nf 

EDZ (E <5)
 

Pf 

HDZ (E < 2) 

Pf 

EDZ (E <5)
 

0.1×10
4 181 496 0.181 0.496 

0.5×10
4
 924 2535 0.185 0.507 

1×10
4
 1880 5047 0.188 0.505 

5×10
4
 9605 25056 0.192 0.501 

10×10
4
 19023 50179 0.190 0.502 

15×10
4
 28801 75504 0.192 0.503 

20×10
4
 38071 100483 0.190 0.502 

25×10
4
 48227 125674 0.193 0.503 

30×10
4
 57182 150721 0.191 0.502 

35×10
4
 66877 175652 0.191 0.502 

40×10
4
 76248 200798 0.191 0.502 

45×10
4
 85897 225873 0.191 0.502 

50×10
4
 95408 250902 0.191 0.502 

 

Table 9: A few samples of data generated, using the LHS based on ANN-HPSOGA model 

No. 

Generated input by 

LHS 

Generated output by ANN-

HPSOGA model 

X (m) Y (m) Z (m) Deformation modulus (GPa) 

1 6.1 8.5 17.8 8.6 

2 5.5 5.2 12.5 3.3 

3 5.5 7.1 15.1 1.8 

4 9.1 7.4 9.7 18.3 

5 4.4 4.0 27.5 14.6 

6 8.5 5.8 15.6 11.4 

7 7.4 6.3 20.2 3.8 

8 6.6 2.9 18.8 6.6 

9 7.7 5.0 11.5 2.9 

10 4.1 8.1 17.9 1.8 

 

  The procedure of estimation of creation probability of damaged zone is summarized in 

Figure15. 

 

 

6. CONCLUSIONS 
 

The EDZ affects the behavior of rock mass surrounding the construction that reduces the 

stability and safety factor and increases probability of failure of the structure. In this 

research a methodology for determining the creation probability of damaged zone was 

proposed and the following remarks were concluded: 
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 Implementation hybrid the particle swarm optimization and genetic algorithm 

(HPSOGA) as an optimizer of connection weights of artificial neural network to 

predict the deformation modulus was demonstrated in detail. 

 The ANN-HPSOGA model as a good tool can model the damage occurred due to 

blasting around an underground excavation based on the variation in the deformation 

modulus. 

 The HPSOGA has high robustness in optimization issue due to integrating global 

search and local search abilities of the GA and the PSO. The results obtained showed 

that it can be used to tune the weights of the ANN model for the assessment of the 

damaged zone creation. 

 Hybrid the LHS and ANN-HPSOGA when the relation function is not known 

explicitly and is complicated, is a powerful tool to make a relation between input 

variables and output to generate a value for each variable. 

 The methodology suggested can be used effectively to find creation probability of the 

damaged zone, which can be led to a better understanding the risks of a project, a 

more efficient of establishing geotechnical zoning and the costs can be estimated with 

more reliability. Furthermore, it can be utilized for optimal design of blast pattern and 

support used. 

 

 
Figure15. The procedure of estimation of the creation probability of damaged zone 
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