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ABSTRACT

An efficient method for size and layout optimization of the truss structures is presented in
this paper. In order to this, an efficient method by combining an improved discrete particle
swarm optimization (IDPSO) and method of moving asymptotes (MMA) is proposed. In
the hybrid of IDPSO and MMA, the nodal coordinates defining the layout of the structure
are optimized with MMA, and afterwards the results of MMA are used in IDPSO to
optimize the cross-section areas. The results show that the hybrid of IDPSO and MMA can
effectively accelerate the convergence rate and can quickly reach the optimum design.
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1. INTRODUCTION

Recently, meta-heuristic optimization methods such as genetic algorithms (GAs),
evolutionary programming (EP), ant colony optimization (ACO), particle swarm
optimization (PSO) and Big Bang and Big Crunch algorithm (BB-BC) have become more
attractive [1]. These methods do not need conventional mathematical assumptions and thus
increase chance of locating the global optimum than the conventional optimization
algorithms. In particular, PSO [2] has relatively few internal parameters and a convenient
floating point treatment of design variables. The number of capabilities that attractively
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increase this evolutionary algorithm is its lower number of parameter necessary to set before
and its floating point treatment for the design variables. Successful applications of PSO to
solve structural engineering problems are documented in [3-11]. Fourie and Groenwold [12]
used PSO for sizing and shape optimization of skeletal and continuum structures. While the
continuous PSO is in general highly suited for structural optimization, discrete PSO (DPSO)
may be trapped in local minima if the optimization problem includes discrete variables. This
explains why there are rather few examples of application of discrete PSO compared to
continuous optimization problems. The applications of DPSO in discrete search space are
relatively much less than those in continuous problem spaces.

The method of moving asymptotes (MMA) is an iterative mathematical programming
technique which builds strictly convex approximations of the optimization problem [13, 14].
MMA uses both function values and first or second derivative values computed at the
current design point found in the previous iterations to solve a sequence of linearized,
convex and separable sub-problems. MMA was proven to be very efficient in solving large-
scale topology optimization problems with multiple constraints [15, 16].

This paper describes an efficient hybrid algorithm for simultaneous sizing and layout
optimization of truss structures subject to displacement and stress constraints. The proposed
algorithm combines improved discrete PSO (IDPSO) and MMA. In IDPSO, a new scheme
based on positive integer numbers is utilized to update the position of each particle. IDPSO
and MMA are hybridized to form a two-stage optimization strategy for combined sizing and
layout design of truss structures. MMA is built with respect to nodal coordinates as these
layout variables are continuous while cross sectional areas (i.e. sizing variables) can take
only discrete variables in IDPSO and hence must be fixed in MMA. In the first stage, cross-
sectional areas of elements are assigned and the nodal coordinates defining the layout of the
structure are optimized with MMA. In the second stage, the new configuration thus
determined is used to update the cross-sectional areas of elements of the particles included in
the swarm. Particles are evaluated with the approximate model, and the new velocities and
positions are determined by means of the IDPSO scheme.

Although the single-stage approach involving simultaneous sizing-layout optimization is
inherently more efficient it may be much more expensive computationally compared to the
proposed two-stage approach which treats with design spaces including less design
variables. Further complications may arise from the mixed coding scheme that has to be
implemented to deal with discrete or continuous variables [17].

The new hybrid algorithm proposed in this research is tested in four benchmark problems
of mixed sizing-layout weight minimization problems of truss structures. Results fully
demonstrate the efficiency of the proposed algorithm.

2. PROBLEM FORMULATION

A structural optimization problem can be formulated in the following form,
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Minimize  f(X)
Subjectto g (X)<0 i=12,..m 1)

X={X1,X2 .0, Xj oo X Y € Rd

where f(X) represents objective function, g(X) is the behavioral constraint, m and n are
the number of constraints and design variables, respectively. A given set of values is
expressed by R? and design variables X;j can take values only from this set.

In the size and layout optimization of trusses, the aim is usually to minimize the weight
of the truss structures under design constraints. The design variables are chosen to be cross-
section areas of the elements and coordinates of nodes in the structure. The cross-section
areas of the elements and coordinates of nodes are usually selected from a set of discrete and
continuous available values, respectively. Therefore, the optimization problem can be
reformulated in the following form,

Minimize f(X)=W(A ,Xj)=§piAi L,
=

(AL X
Subject to gSi=m—lsO 1=12,..,N,
Ol @)
A(A X
gDi:M -1<0  j=12,..,N,
AaII
AeA ={Aq Az A}
X <X; <XV

where W is the structural weight, p;, A and L; are the material density, cross-section
area and length of the ith element; o; and o,, are the stress of the ith element and the
allowable axial stress; 4; and 4, are the displacement of the jth node and the allowable

displacement; N, and N, are the number of elements and nodes in the structure; A, is the
available profile list; XjL and XJF’ are the lower and upper bounds of the node coordinate,
respectively.

A number of constraint-handling techniques have been proposed to solve constrained

optimization problems. In this study, the penalty function is used to deal with constrained
search spaces as,

f(X) if X eR®

f(x)= f(X)+ Y, max (g,(X),00) otherwise ®)

where f(x ) is modified function. Also, R? denotes the feasible search space.
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3. PARTICLE SWARM OPTIMIZATION

The Particle swarm optimization (PSO) was inspired by the social behavior of animals such
as fish schooling, insects swarming and birds flocking. PSO was introduced by Kennedy and
Eberhart in the mid 1990s, to simulate the graceful motion of bird swarms as a part of a
socio-cognitive study. It involves a number of particles that are initialized randomly in the
search space of an objective function. These particles are referred to as swarm. Each particle
of the swarm represents a potential solution of the optimization problem. The ith particle in
tth iteration is associated with a position vector, X, and a velocity vector,V,", that shown as

following,

X{ ={Xi1,Xipemnr Xin}
Vit ={Vis,Vipo Vin}

(4)

where D is dimension of the solution space.

The particle fly through the solution space and its position is updated based on its
velocity, the best position particle (pbest) and the global best position (gbest) that swarm has
visited since the first iteration as,

V" =w'V' +c, 1, ( pbest; — X!)+c,r,( gbest' — X) (5)
X = X4V (6)

where 1, and r, are two uniform random sequences generated from interval [0, 1]; c;

and c, are the cognitive and social scaling parameters, respectively and o' is the inertia
weight that controls the influence of the previous velocity.

Shi and Eberhart (1998) proposed that the cognitive and social scaling parameters c; and
C, should be selected as c;=c,=2 to allow the product c;r; or c,r, to have a mean of 1. The
performance of PSO is very sensitive to the inertia weight(w)parameter which may
decrease with the number of iteration (Shi and Eberhart 1998) as follows:

— Wi t

Y

where o,,,, and @,,;, are the maximum and minimum values of  , respectively; and tyax is
the limit numbers of optimization iteration.

3.1. Discrete PSO

The Particle swarm optimization (PSO) was inspired by the social behavior of animals such
as fish schooling, insects swarming and birds flocking. PSO was introduced by Kennedy and
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Eberhart [2] in the mid 1990s, to simulate the graceful motion of bird swarms as a part of a
socio-cognitive study. It involves a number of particles that are initialized randomly in the
search space of an objective function. These particles are referred to as swarm. Each particle
of the swarm represents a potential solution of the optimization problem. The ith particle in
tth iteration is associated with a position vector, X, and a velocity vector,V,', that is shown

as follows,

X ={Xi1,Xipemnr Xip}

(4)
Vi ={VinVigi Vip}
where D is the dimension of the solution space.
The particle fly through the solution space and its position is updated based on its
velocity, the best position particle (pbest) and the global best position (gbest) that swarm has
visited since the first iteration as,

V" ="'V +c 1 ( pbest; — X )+c, 1, ( gbest' — X) (5)
X = X4V (6)

where 1, and r, are two uniform random sequences generated from interval [0, 1]; c;

and ¢, are the cognitive and social scaling parameters, respectively and o' is the inertia
weight that controls the influence of the previous velocity.

Shi and Eberhart [18] proposed that the cognitive and social scaling parameters c; and c;
should be selected as c;=c,=2 to allow the product c;r; or c,r, to have a mean of 1. The
performance of PSO is very sensitive to the inertia weight(w)parameter which may

decrease with the number of iteration [18] as follows:

®Omax — Omi
= Omgy ——2Mmax min_ ¢

(")

tmax

where o,,,, and @,;, are the maximum and minimum values of  , respectively; and tyax is
the maximum number of optimization iteration.

3.2. Discrete PSO

Kennedy and Eberhart also developed the discrete particle swarm optimization (DPSO)
algorithm to solve problems with binary-valued design variables [19]. Since positions of
particles are defined by 1 or 0, any particle can move in a binary design space including only
values 0 and 1. New definitions for velocity, distance and movement path must be presented
in terms of the probability that bits have to be in a specific position. The velocity of each
particle is related to this probability. In DPSO, Eqg. (5) can be used without any changes for
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updating the velocity which has to be converted in the interval [0,1] by a logic function. The
particle position update Eq. (6) must instead be redefined as:

{1 for rand () <S(v§")
o ©)

t+1
" |0 for rand()=S(v}")

where rand (.) is a random number selected from a uniform distribution in the interval
[0,1], and S(vtij”) IS a converting sigmoid function expressed as [19]:

1
1+exp(-vi) 9)

ij

S(v§") =sigmode (v;") =

To avoid S(v‘ij*l) approaching 0 or 1, a constant Vi is used to limit the range of velocity.

Vmax IS Often limited to 4 so that vi‘j+l e[-4,4]and

V.. if vit >V,
Vithrl = _Vmax if Vitj+l < _Vmax (10)
Vit otherwise

ij

As DPSO approaches the optimum design, the probability of being 1 or O becomes 0.5
regardless of previous values of velocity. Since the particle position updating probability
cannot tend to 0, DPSO slowly converges to the global optimum. In order to solve this
problem, a modified sigmoid function was introduced by Rostami and Nezamabadipour
[20]:

S(vift)=2 (11)

iymoid (vi+1y_ L
SIgm0|d(viJ*) 5

where S(-)is a modified sigmoid function.

3.2 The improved DPSO

Storage of particle positions in DPSO requires large computer memory. In addition, coding
and encoding of particle positions is computationally expensive. In order to overcome these
limitations, different discrete versions of PSO were proposed in literature [21-29].

This study presents an improved DPSO (IDPSO) algorithm where each particle is coded

in terms of positive integer numbers. Therefore, the scalar xtij e{L,2,..., p}corresponds to
one of the discrete values included in the set {A, A,,..., A }of available cross-sections. The
definition of velocity remains the same as in the standard DPSO but the position of particles
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is now updated as follows:

(12)

ij Xlij for rand () > §(Vtij+1

o {INT(XEJ. +vih)  for rand () < S(vi?)
K =

In order to avoid stagnation of particle positions, the following update rule is utilized:

pbest t<t

gbest

INT (X] j +v§;l)= gbestjt 193 (13)

+1 H
INT (xj; +Vv{;") otherwise
where pbestiﬁ and gbest} are the jth component of best position particle (pbest) in the

tth iteration and the jth component of the global best position (gbest), respectively; and tgpes
is the optimization iteration at which the global best was achieved

4. METHOD OF MOVING ASYMPTOTES
The method of moving asymptotes (MMA) developed by Svanberg [13] is a generalization

of the convex linearization method (CONLIN) [30] without global convergence. The
optimization problem (1) is reformulated by including artificial variables Y= (yy, . .., ym)":

minimize  f(X)+a,z+ > (c;y; +%diyi2)
i=1

subjectto g;(X)—a;z-y; <0 i=1..m (14)
X <X < X j=1..,n
z>20,y, 20 i=1..m

where 9y, 0,,..., 9, are given, twice differentiable and real-valued functions, while
a,,8,,C; and d;are given real numbers so that a,>0,a >0,c,>0,d, >0 and

c,+d, >0fori=12,..,m.

MMA can be applied to structural optimization problems where cost function and
constraint gradient evaluations are very time consuming. The algorithm includes outer and
inner iterations denoted by indices k and I, respectively. A sub-problem is generated and
solved with respect to design variables X® and artificial variables Y®. The sub-problem is
obtained from the original problem (2) by replacing cost function and non-linear constraints

with separable strictly convex approximating functions f " and §*". That is:



64 S. Shojaee, M. Arjomand and M. Khatibinia

minimize  f“"(X)+a,z+> (cy, +%diyf)

i=1

subject to g"(X)-az-y, <0, i=1..m (15)
a<x, < B, j=1..,n
2>0,y,20, i=1..m
where
ol =max{ x{™,0.91% +0.1x{"}, B =max{ x[™,0.9u{” +0.1x¥} (16)

and f.*" is the approximating functions. The parameters a,, a; and z (Egs. 14 and 15)
are set and updated according to Ref [14]. The rules for updating the lower asymptotes
I and the upper u{ asymptotes have been presented by Svanberg [14].

5. FORMULATION OF THE HYBRID IDPSO-MMA

In sizing-layout optimization of truss structures cross-sectional areas of elements and nodal
coordinates can vary in discrete and continuous search spaces, respectively. The hybrid
optimization algorithm developed in this research combines the search capabilities of
IDPSO and MMA in the two distinct design sub-spaces. A two-stage optimization strategy
is followed. After having initialized the cross-sectional areas of elements, the layout of the
structure is optimized with MMA by including only the nodal coordinates as design
variables. The optimized layout is hence included in the design vectors corresponding to
particles. In the second stage of the optimization process, IDPSO is utilized to update
particle positions with respect to sizing variables and to find the global/local best design
points with respect to which convex approximation is built in the subsequent layout
optimization cycle. It should be noted that the best layout of truss structure (i.e. the best
particle) that each particle has visited since the first iteration is selected as the base point
necessary to construct the convex approximation for MMA in the subsequent layout
optimization cycle. This approach allows the convergence to optimum design to be speeded
up.

The basic steps of the hybrid optimization algorithm can be outlined as follows:

Step 1: Set internal parameters of IDPSO (c,,C,,®) and population size of IDPSO
(Npso). Also set the limit number of optimization iterations (Iyax)-

Step 2: Randomly initialize positions (X.)as initial cross-sectional areas of elements
with the initial configuration of truss structure and velocities (V,°) for i =1,2,...,Npgq .

Step 3: Optimize the layout of the structure with MMA for each particle.

Step 4: Update f .., for each particle and ., = min(f'").

Step 5: Evaluate structural response and weight for each particle by including the
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optimized layout variables.

Step 6: If £ < ! . then ' = f"*, pbest/™ = X!™ for i=1,2,..., Npg -
Step 7: If min( ") < .., then .., =min( "), gbest"™ = X% .

Randomly initialize particles with positions (Xf) as initial cross-
. ‘- -0 -
sectional areas of elements and velocities (V") fori=1. 2. ....

Neso

.

Utilize MMA for layout optimization of each particle

l

Update 7, , for each particle and set mm(f;,_ ) as f

;
ghest

Evaluate structural response and weight for each particle by
including the optimized layout variables

ot pt+l | -+
‘.f:‘.pbesf = f;‘ e pbesr: = “‘:
I
|

S e =min(f*). gbest™ = X7,

< i.min
|

Update the velocity and position of each particle with using Eqs.
(5) and (12)

Output gbest ™™

I t=t+1 ‘

Fig. 1. Flow chart for IDPSO-MMA algorithm

Step 8: Update particle velocity Vjt+l and particle position X}” using Egs. (5) and (12),
respectively.

Step 9: If t<t,, , then stop; otherwise go to step 3.

Figure 1 shows the flow-chart of the hybrid IDPSO-MMA algorithm developed in this
study. To assess the efficiency of the proposed IDPSO-MMA, the optimization is
performed by using DPSO-MMA and IDPSO-MMA methods at first, and then the optimal
solutions of IDPSO-MMA is compared with those of DPSO-MMA. The DPSO-MMA
algorithm is the same IDPSO-MMA algorithm, but Eq. (8) is used in stead of Eq. (12) for
updating of particle position in step 8, which is mentioned earlier.
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6. TEST CASES AND RESULTS

Four classical weight minimization problems of truss structures were solved in order to
check the numerical efficiency of the hybrid IDPSO-MMA algorithm developed in this
research. Optimization results were compared with data reported in literature. Furthermore,
the new algorithm was compared to another hybrid algorithm combining standard DPSO
and MMA. Internal parameters set for the particle swarm optimizer are summarized in Table
1.

Table 1: Values of internal parameters set for IDPSO

Parameter Value
Swarm size 50
Cognitive parameter 2.5
Social parameter 2.5
Minimum of inertia weight 0.01
Maximum of inertia weight 0.90
Maximum number of iterations 200

The values of internal parameters for DPSO are the same as these of IDPSO. In order to
consider the stochastic nature of the optimization process, ten independent optimization runs
are performed for DPSO-MMA and IDPSO-MMA methods and the best solutions are
reported. The methods are coded in MATLAB and structures are analyzed using the direct
stiffness method.

6.1. Test case 1: Fifteen-bar truss structure

The fifteen-bar truss shown in Fig. 2 is subjected to a concentrated load of 44.537 kN acting
downward at node 8. The Young modulus of the material is 68.95 GPa while mass density is
2720 kg/m®. Design variables are listed in Table 2: this test case included 15 sizing variables
and 8 layout variables. The optimization constraints with allowable stress limits and side
limits are presented in Table 3 which also includes the list of available cross-sectional area
values.

——304.8cm - 304.8 cm | 304.8 cm
1 1 2 2 3 3 4
12 14 T
13
Y 10 1 |7 8 15 [93048cm

-
}—

5 4 6 5 7 6 8

Fig. 2. Configuration of fifteen-bar truss

Table 2: Optimization variables for the fifteen-bar truss problem
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A;i=1,2,3,...,15 Sizing
Xy =Xe3 X3 =X73Y2:Y3: Y41 Y1 Y73 Ve Layout

Table 3: Optimization constraints for the fifteen-bar truss problem

|oy|<172.4 MPa , i=12,..15 Stress limit
254cm < x, <355.6cm
558.8cm < x, <660.4cm
254cm <y, <355.6cm
254cm <y, <355.6cm Side limit on Constraint data
127cm <y, <228.6cm layout variables
-50.8cm <y, <50.8cm
—-50.8cm <y, <50.8cm
50.8cm <y, <152.4cm

A €S = {0.716,0.910,1.123,1.419,1.742,1.852,2.239,2.839,3.477,6.155,6.
974,7.574,8.600, 9.600, 11.381, 13.819, 17.400, 18.064, 20.200, 23.00,24.6,
31.0, 38.4, 42.4, 46.4, 55.0, 60.0, 70.0, 86.0, 92.193, 110.774, 123.742} cm®

List of the
available profiles

Table 4 represents a comparison between the cross-sectional areas and node coordinates
obtained by DPSO-MMA and different researchers together with the corresponding weight
for the fifteen-bar truss. It can be seen that IDPSO-MMA performed better than DPSO-
MMA and other optimization techniques and found lighter structures while satisfying all the
constraints. The optimized layout of the structure is shown in Fig. 3.

Figure 4 compares the convergence curves recorded for IDPSO-MMA and DPSO-MMA.
It can be seen that the proposed algorithm implementing the new discrete PSO particle
update scheme was considerably faster.

(@) 2

= )
N & /]

Fig. 3. (a) Optimal layout of the fifteen-bar truss, (b) The layout of the nodes 4 and 8.

Table 4: Optimization results for the fifteen-bar truss problem

IDPSO- DPSO- Rahami Wenyan AR Wu and Design

MMA MMA  etal. [34] [33] a?gz'?e Chow [31] variables
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180 1
—— IDPSO-
MMA
160 A
42
140 A 40 1
120 38 |-
N 36
()
X -
Zoo a4
2
S g0 | 32
80 100 120 140 160 180 200
60 A
40 A
\
20 T T T T T T T T T
0 20 40 60 80 100 120 140 160 180 200

lteration

Fig. 4. Comparison of the convergence rates between the IDPSO-MMA and the DPSO-MMA

6.2. Test case 2: Michell arch

The Michell semi-circular arch shown in Fig. 5 must be designed for minimum weight. The
arch is subject to a load of 200 kN acting downward at node 1. The Young modulus of the
material is 210 GPa while mass density is 7800 kg/m3. This optimization problem has an
analytical solution if allowable stresses in tension and compression are equal [35]:

12

T
W =—LPptan(—
—LPp (12)

where L is the length of half span, which in this example is equal to 1 m; and o is the
allowable stress in tension.

During the optimization process of the arch, nodes 3 and 7 are shifted in horizontal
direction and nodes 4, 5 and 6 in vertical direction, respectively. The structural symmetry is
maintained. Therefore, only the coordinate of two nodes are variable in the optimization
process. The members of truss are classified into seven groups to represent seven variables
of cross-section areas that shown in Table 5. The design variables are given in Table 6. The
constraint data and cross-section areas of elements are listed in Table 7.

Table 8 represents a comparison between the cross-sectional areas and node coordinates
obtained by DPSO-MMA together with the corresponding weight for the fifteen-bar truss. It
can be seen that IDPSO-MMA performed better than DPSO-MMA and found lighter
structures while satisfying all the constraints. The optimized layout of the structure is shown
in Fig. 6.
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Fig. 7 compares the convergence rate between IDSPO-MMA and DSPO-MMA for this
example. It can be seen that the proposed algorithm implementing the new discrete PSO
particle update scheme was considerably faster.

|

t 4X0.5M |
3 3 a 4 5 5 6 6 - S
9 10 11 12
2 13 7 |osm
2 1 8 8 1
1
\

Fig. 5. Configuration of Michell arch

Table 5: Element group linking for the Michell arch problem

Members (end nodes) Group
1(1,2),8(L,8) Ay
2(2,3),7(7,8) A;
3 (3!4) !6 (6!7) A3
4 (4,5) ,5 (5,6) A,
9(1,3),13(1,7) As

10 (1,4) ,12 (1,6) Ag
11 (1,5) A7
Table 6: Optimization variables for the Michell arch problem
Asi=LL2,000,7 Sizing
X=X, Ya=VYs, Y5 Layout

Table 7: Optimization constraints for the Michell arch problem

|oi|<240 MPa ; i=12,..,13 Stress limit
‘Ayl‘ <3.8mm Displacement limit
Constraint data
0< %, <1(m) _ _
0<y, <1(m) Side constraints on

layout variables
0<y.<1(m)

A €S={1.011.02,1.03,1.04, ..., 5}(cm?)

List of the
available profiles
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Table 8: Optimization results for the Michell arch problem

o @,

Fig. 6. Optimal layout of the Michell arch

85

— IDPSO-MMA
—— DPSO-MMA
75 A
24
65
23
\ \

~ 554 22
S
< \\
% 21
k)

45 -
= 20

40 60 80 100 120
35
25 4
S
15 T T T T T T T T T
0 20 40 60 80 100 120 140 160 180 200

Iteration

Fig. 7. Comparison of the convergence rates between the IDPSO-MMA and the DPSO-MMA
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6.3. Test case 3: Twenty five-bar truss structure

A twenty five-bar truss is considered as shown in Fig. 8. The coordinates of the nodes are
listed in Table 9. The members of truss are classified into eight groups to represent eight
variables of cross-section areas. The member grouping is shown in Table 10. Table 11 lists
the values and directions of the loads applied to the truss. The Young modulus of the
material is 68.95 GPa while mass density is 2720 kg/m®. The constraint data and the design
variables are presented in Tables 12 and 13. The cross-section areas of elements are selected
from Table 13.

L=63.5cm

Fig. 8. Configuration of twenty five-bar space truss

The comparison of the results with those of the other references is provided in Table 14.
It can be seen that IDPSO-MMA performed better than DPSO-MMA and other optimization
techniques and found lighter structures while satisfying all the constraints.

Tbale 9: Nodal coordinates of the initial configuration considered for the spatial twenty five-
bar truss problem

z (cm) y (cm) X (cm) Node
508 0.0 -95.25 1
508 0.0 95.25 2
254 95.25 -95.25 3
254 95.25 95.25 4
254 -95.25 95.25 5
254 -95.25 -95.25 6
0.0 254 -254 7
0.0 254 254 8
0.0 -254 254 9

0.0 -254 -254

[ERN
o
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Table 10: Element group linking for the spatial twenty five-bar truss problem

Table 11: Loading acting on the twenty five-bar truss problem

Table 12: Optimization variables of the spatial twenty five-bar truss problem

Table 13: Optimization constraints for the spatial twenty five-bar truss problem
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Table 14: Optimization results for the spatial twenty five-bar truss problem

Optimal layout for the truss is shown in Fig. 9. Fig. 10 compares the convergence rate
between IDSPO-MMA and DSPO-MMA for this example. It can be seen that the proposed
algorithm implementing the new discrete PSO particle update scheme was considerably

faster.

Fig. 9. Optimal layout of the twenty five-bar space truss
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310 — IDPSO-MMA
— DPSO-MMA
280 -
250 - 70 1
65
220 - \
60 | —
2 190 - 55 ]
£
g
= 160 50
40 60 80 100
130
100 \—\_\
70 4 I
40 . . . . . . . . .
0 20 40 60 80 100 120 140 160 180 200

lteration

Fig. 10. Comparison of the convergence rates between the IDPSO-MMA and the DPSO-MMA

6.4. Test case 4: Thirty nine-bar tower

A triangular tower with the given configuration is shown in Fig. 11. The bottom and top
nodes are fixed while all the intermediate node positions will be redesigned. The coordinates
of three bottom nodes 1, 2, 3 and three top nodes 13, 14 and 15 are given in Table 15. The
members of truss are classified into five groups to represent five variables of cross-section
areas. The member grouping is shown in Table 16. Table 17 lists the values and directions of
the loads applied to the tower. During the optimization process, the structural symmetry is
remained, which implies that there are only 6 shape variables: y4, z4, Y7, Z7, Y10, Z10. The list
of variables is presented in Table 18. The displacement of node 13 in the y-direction must
not exceed a given limit of 4 mm. The constraint data and the design variables are presented
in Tables 19. The cross-sectional areas of elements are selected from Table 19.

Table 15: Nodal coordinates of the fixed nodes (top and bottom sides) of the thirty nine-bar truss

problem
Top nodes Bottom nodes
z (m) y (m) X (m) Number z (m) y (m) X (m) Number
4 0.28 0 13 0 1 0 1
0.42
4 -0.14 NG 14 0 -0.5 3 2
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Fig. 11. Configuration of thirty nine-bar tower

Table 16: Element Group linking for the thirty nine-bar truss problem

Table 17: Loading acting on the thirty nine-bar truss problem

Table 18: Optimization variables for the thirty nine-bar truss problem

Table 19: Optimization constraint for the thirty nine-bar truss problem
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The comparison of the results with those of Wang et al. [35] is provided in Table 20.
Optimum weight obtained by IDPSO-MMA is about 16% and 3.5% lighter than those in
Ref. [35] and DPSO-MMA while satisfying all the constraints.

Table 20: Optimization results for the thirty nine-bar truss problem
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Fig. 12. Optimal layout of thirty nine-bar tower

Optimal layout for the truss is shown in Fig. 12 and Fig. 13 compares the convergence
rate between IDSPO-MMA and DSPO-MMA for this example. It can be seen that the
proposed IDPSO-MMA implementing the new discrete PSO particle update scheme was
considerably faster.
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Fig. 13. Comparison of the convergence rates between the IDPSO-MMA and the DPSO-MMA

6.5. Test case 5: Eighteen-bar truss structure

In the example the aim is to optimize the cross-section size and layout of an eighteen-bar
truss shown in Fig. 14 subject to stress and Euler buckling stress constraints. Optimization
variables of the spatial structure are listed in Table 21. The constraint data and the design
variables are presented in Tables 22. The Young modulus of the material is 68.95 GPa while
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mass density is 2720 kg/m?®. The single loading condition is a set of vertical loads acting on
the upper joints of the truss. The lower joints 3, 5, 7 and 9 are allowed to move in any
direction in the x-y plane. The sections are taken from a profile list S of 80 sections starting
with an area of 12.903 cm? increasing in the steps of 1.613 cm? to 140.322 cm?. For layout
variables, a precision of 2.54 cm is considered.

P P P P] li

0 15 8 12 6 8 4 4 2

P
17 13 9 5 3 T

¥ 15 1 7 2
14 10 6
11 [ 7 5 3
74 Vv

A 5a A

A F]

P=89.1kN a=0.635m

Fig. 14. Configuration of eighteen-bar truss
The results of the size/layout optimization using the IDSPO-MMA method are compared
to those of other references in Table 23. It can be seen that IDPSO-MMA performed better
than other optimization techniques and found lighter structures while the stress constraint is
violated about 0.47%. Optimal layout for the truss is shown in Fig. 15.

Table 21: Optimization variables for the eighteen-bar truss problem
A=A=A=A=As A=A=A,=As
A=A=A=As A=A=A=A,

X3;y3;x5;y5;x7;y7;xg;y9 LayOUt

Sizing

Table 22: Optimization constraint for the eighteen-bar truss problem

|0;|<137.9 MPa ; i=12,...,18 Stress limit
oo | <aEAIL a=4;i=12,..,18 LTl g
el e ’ Y stress limit
—5.715(m) < ¥, Ye, Y7, Yo < 6.223(m) _
19.685(m) < x, < 31.115(m) nggra'“t
13.335(m) < x; < 24.765(m) Side constraints on
6.985(m) < x, <18.415(m) layout variables
0.635(m) < x, <12.065(m)
0.28(m) < y,, <1(m)
List of the
A €S ={12903,14516, ...,138.709,140.322}(cm?) available

profiles
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Fig. 15. Optimal layout of eighteen-bar truss

Table 23: Optimization results for the Eighteen-bar truss structure

At the present work, Max stress = 138.55 MPa
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7. CONCLUSIONS

In this paper, hybrid of an improved discrete particle swarm optimization (IDPSO) and
method of moving asymptotes (MMA) is presented to find the optimal size and layout of the
truss structures subject to displacement and stress constraints. The optimal size and layout of
the truss structures simultaneously deal with mixed discrete and continuous variables. Due
to this fact, the hybrid of IDPSO and MMA consisting of two stages for the size and
geometry optimization is used. The IDPSO-MMA can increase the probability of finding the
near global optimum. The main idea behind the proposed IDPSO-MMA is to combine the
advantages of IDPSO and MMA methods in the two search spaces. In the first stage, the
layout of truss structure is optimized with MMA by including only the nodal coordinates as
design variables. In the second stage of the optimization process, IDPSO is utilized to
update sizing variables and to find the global/local best design points with respect to which
convex approximation is built in the subsequent layout optimization cycle. IDPSO is
introduced to overcome the limitations of the standard discrete PSO. The truss structures are
used in the related literature as benchmarks are considered to verify the efficiency of the
IDPSO-MMA method. The results are shown that the proposed method can effectively
accelerate the convergence rate and can more quickly reach the optimum design. The
comparisons of the numerical results performed using the IDPSO-MMA method
demonstrate the robustness of the proposed method.
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