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ABSTRACT 
 

An efficient method for size and layout optimization of the truss structures is presented in 

this paper. In order to this, an efficient method by combining an improved discrete particle 

swarm optimization (IDPSO) and method of moving asymptotes (MMA) is proposed. In 

the hybrid of IDPSO and MMA, the nodal coordinates defining the layout of the structure 

are optimized with MMA, and afterwards the results of MMA are used in IDPSO to 

optimize the cross-section areas. The results show that the hybrid of IDPSO and MMA can 

effectively accelerate the convergence rate and can quickly reach the optimum design.  
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1. INTRODUCTION 
 

Recently, meta-heuristic optimization methods such as genetic algorithms (GAs), 

evolutionary programming (EP), ant colony optimization (ACO), particle swarm 

optimization (PSO) and Big Bang and Big Crunch algorithm (BB-BC) have become more 

attractive [1]. These methods do not need conventional mathematical assumptions and thus 

increase chance of locating the global optimum than the conventional optimization 

algorithms. In particular, PSO [2] has relatively few internal parameters and a convenient 

floating point treatment of design variables. The number of capabilities that attractively 
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increase this evolutionary algorithm is its lower number of parameter necessary to set before 

and its floating point treatment for the design variables. Successful applications of PSO to 

solve structural engineering problems are documented in [3-11]. Fourie and Groenwold [12] 

used PSO for sizing and shape optimization of skeletal and continuum structures. While the 

continuous PSO is in general highly suited for structural optimization, discrete PSO (DPSO) 

may be trapped in local minima if the optimization problem includes discrete variables. This 

explains why there are rather few examples of application of discrete PSO compared to 

continuous optimization problems. The applications of DPSO in discrete search space are 

relatively much less than those in continuous problem spaces.  

The method of moving asymptotes (MMA) is an iterative mathematical programming 

technique which builds strictly convex approximations of the optimization problem [13, 14]. 

MMA uses both function values and first or second derivative values computed at the 

current design point found in the previous iterations to solve a sequence of linearized, 

convex and separable sub-problems. MMA was proven to be very efficient in solving large-

scale topology optimization problems with multiple constraints [15, 16]. 

This paper describes an efficient hybrid algorithm for simultaneous sizing and layout 

optimization of truss structures subject to displacement and stress constraints. The proposed 

algorithm combines improved discrete PSO (IDPSO) and MMA. In IDPSO, a new scheme 

based on positive integer numbers is utilized to update the position of each particle. IDPSO 

and MMA are hybridized to form a two-stage optimization strategy for combined sizing and 

layout design of truss structures. MMA is built with respect to nodal coordinates as these 

layout variables are continuous while cross sectional areas (i.e. sizing variables) can take 

only discrete variables in IDPSO and hence must be fixed in MMA. In the first stage, cross-

sectional areas of elements are assigned and the nodal coordinates defining the layout of the 

structure are optimized with MMA. In the second stage, the new configuration thus 

determined is used to update the cross-sectional areas of elements of the particles included in 

the swarm. Particles are evaluated with the approximate model, and the new velocities and 

positions are determined by means of the IDPSO scheme. 

Although the single-stage approach involving simultaneous sizing-layout optimization is 

inherently more efficient it may be much more expensive computationally compared to the 

proposed two-stage approach which treats with design spaces including less design 

variables. Further complications may arise from the mixed coding scheme that has to be 

implemented to deal with discrete or continuous variables [17]. 

The new hybrid algorithm proposed in this research is tested in four benchmark problems 

of mixed sizing-layout weight minimization problems of truss structures. Results fully 

demonstrate the efficiency of the proposed algorithm. 

 

 

2. PROBLEM FORMULATION 
 

A structural optimization problem can be formulated in the following form, 
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where f(X) represents objective function, g(X) is the behavioral constraint, m and n are 

the number of constraints and design variables, respectively. A given set of values is 

expressed by Rd and design variables xj can take values only from this set. 

In the size and layout optimization of trusses, the aim is usually to minimize the weight 

of the truss structures under design constraints. The design variables are chosen to be cross-

section areas of the elements and coordinates of nodes in the structure. The cross-section 

areas of the elements and coordinates of nodes are usually selected from a set of discrete and 

continuous available values, respectively. Therefore, the optimization problem can be 

reformulated in the following form, 
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where W is the structural weight, ii A, and iL  are the material density, cross-section 

area and length of the ith element; i  and all  are the stress of the ith element and the 

allowable axial stress; j  and all  are the displacement of the jth node and the allowable 

displacement; Ne and Nn are the number of elements and nodes in the structure; Ae is the 

available profile list; L

jX and U

jX  are the lower and upper bounds of the node coordinate, 

respectively.  

A number of constraint-handling techniques have been proposed to solve constrained 

optimization problems. In this study, the penalty function is used to deal with constrained 

search spaces as, 
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where )( Xf
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 is modified function. Also, Rd denotes the feasible search space.  
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3. PARTICLE SWARM OPTIMIZATION 
 

The Particle swarm optimization (PSO) was inspired by the social behavior of animals such 

as fish schooling, insects swarming and birds flocking. PSO was introduced by Kennedy and 

Eberhart in the mid 1990s, to simulate the graceful motion of bird swarms as a part of a 

socio-cognitive study. It involves a number of particles that are initialized randomly in the 

search space of an objective function. These particles are referred to as swarm. Each particle 

of the swarm represents a potential solution of the optimization problem. The ith particle in 

tth iteration is associated with a position vector, t

iX , and a velocity vector, t

iV , that shown as 

following, 
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where D is dimension of the solution space. 

The particle fly through the solution space and its position is updated based on its 

velocity, the best position particle (pbest) and the global best position (gbest) that swarm has 

visited since the first iteration as, 
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where 1r  and 2r  are two uniform random sequences generated from interval [0, 1]; c1 

and c2 are the cognitive and social scaling parameters, respectively and t  is the inertia 

weight that controls the influence of the previous velocity.  

Shi and Eberhart (1998) proposed that the cognitive and social scaling parameters c1 and 

c2 should be selected as c1=c2=2 to allow the product c1r1 or c2r2 to have a mean of 1. The 

performance of PSO is very sensitive to the inertia weight )( parameter which may 

decrease with the number of iteration (Shi and Eberhart 1998) as follows: 
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where max and min are the maximum and minimum values of ω , respectively; and tmax is 

the limit numbers of optimization iteration.  

 

3.1. Discrete PSO 

The Particle swarm optimization (PSO) was inspired by the social behavior of animals such 

as fish schooling, insects swarming and birds flocking. PSO was introduced by Kennedy and 
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Eberhart [2] in the mid 1990s, to simulate the graceful motion of bird swarms as a part of a 

socio-cognitive study. It involves a number of particles that are initialized randomly in the 

search space of an objective function. These particles are referred to as swarm. Each particle 

of the swarm represents a potential solution of the optimization problem. The ith particle in 

tth iteration is associated with a position vector, t

iX , and a velocity vector, t

iV , that is shown 

as follows, 
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where D is the dimension of the solution space. 

The particle fly through the solution space and its position is updated based on its 

velocity, the best position particle (pbest) and the global best position (gbest) that swarm has 

visited since the first iteration as, 
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where 1r  and 2r  are two uniform random sequences generated from interval [0, 1]; c1 

and c2 are the cognitive and social scaling parameters, respectively and t  is the inertia 

weight that controls the influence of the previous velocity.  

Shi and Eberhart [18] proposed that the cognitive and social scaling parameters c1 and c2 

should be selected as c1=c2=2 to allow the product c1r1 or c2r2 to have a mean of 1. The 

performance of PSO is very sensitive to the inertia weight )( parameter which may 

decrease with the number of iteration [18] as follows: 
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where max and min are the maximum and minimum values of ω , respectively; and tmax is 

the maximum number of optimization iteration.  

 

3.2. Discrete PSO 

Kennedy and Eberhart also developed the discrete particle swarm optimization (DPSO) 

algorithm to solve problems with binary-valued design variables [19]. Since positions of 

particles are defined by 1 or 0, any particle can move in a binary design space including only 

values 0 and 1. New definitions for velocity, distance and movement path must be presented 

in terms of the probability that bits have to be in a specific position. The velocity of each 

particle is related to this probability. In DPSO, Eq. (5) can be used without any changes for 
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updating the velocity which has to be converted in the interval [0,1] by a logic function. The 

particle position update Eq. (6) must instead be redefined as: 
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where (.)rand  is a random number selected from a uniform distribution in the interval 

[0,1], and )( 1t

ijvS  is a converting sigmoid function expressed as [19]: 
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To avoid )( 1t

ijvS approaching 0 or 1, a constant Vmax is used to limit the range of velocity. 

Vmax is often limited to 4 so that 4] [-4,1 t

ijv and  
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As DPSO approaches the optimum design, the probability of being 1 or 0 becomes 0.5 

regardless of previous values of velocity. Since the particle position updating probability 

cannot tend to 0, DPSO slowly converges to the global optimum. In order to solve this 

problem, a modified sigmoid function was introduced by Rostami and Nezamabadipour 

[20]: 
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where )(S is a modified sigmoid function. 

 

3.2 The improved DPSO 

Storage of particle positions in DPSO requires large computer memory. In addition, coding 

and encoding of particle positions is computationally expensive. In order to overcome these 

limitations, different discrete versions of PSO were proposed in literature [21-29]. 

This study presents an improved DPSO (IDPSO) algorithm where each particle is coded 

in terms of positive integer numbers. Therefore, the scalar },...,2,1{ pxt

ij  corresponds to 

one of the discrete values included in the set },...,,{ 21 pAAA of available cross-sections. The 

definition of velocity remains the same as in the standard DPSO but the position of particles 
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is now updated as follows: 
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In order to avoid stagnation of particle positions, the following update rule is utilized: 
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where t

jipbest  and t

jgbest  are the jth component of best position particle (pbest) in the 

tth iteration and the jth component of the global best position (gbest), respectively; and tgbest 

is the optimization iteration at which the global best was achieved 

 

 

4. METHOD OF MOVING ASYMPTOTES 
 

The method of moving asymptotes (MMA) developed by Svanberg [13] is a generalization 

of the convex linearization method (CONLIN) [30] without global convergence. The 

optimization problem (1) is reformulated by including artificial variables Y= (y1, . . . , ym)T : 
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where mggg ,...,, 10 are given, twice differentiable and real-valued functions, while 

ii caa ,,0 and id are given real numbers so that 0,0,0,00  iii dcaa and 

0 ii dc for mi ,...,2,1 . 

MMA can be applied to structural optimization problems where cost function and 

constraint gradient evaluations are very time consuming. The algorithm includes outer and 

inner iterations denoted by indices k and l, respectively. A sub-problem is generated and 

solved with respect to design variables X(k) and artificial variables Y(k). The sub-problem is 

obtained from the original problem (2) by replacing cost function and non-linear constraints 

with separable strictly convex approximating functions 
),(~ lkf and 

),(~ lk

ig . That is: 
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and ),(~ lk

if  is the approximating functions. The parameters ao, ai and z (Eqs. 14 and 15) 

are set and updated according to Ref [14]. The rules for updating the lower asymptotes 
)(k

jl and the upper )(k

ju asymptotes have been presented by Svanberg [14]. 

 

 

5. FORMULATION OF THE HYBRID IDPSO-MMA 
 

In sizing-layout optimization of truss structures cross-sectional areas of elements and nodal 

coordinates can vary in discrete and continuous search spaces, respectively. The hybrid 

optimization algorithm developed in this research combines the search capabilities of 

IDPSO and MMA in the two distinct design sub-spaces. A two-stage optimization strategy 

is followed. After having initialized the cross-sectional areas of elements, the layout of the 

structure is optimized with MMA by including only the nodal coordinates as design 

variables. The optimized layout is hence included in the design vectors corresponding to 

particles. In the second stage of the optimization process, IDPSO is utilized to update 

particle positions with respect to sizing variables and to find the global/local best design 

points with respect to which convex approximation is built in the subsequent layout 

optimization cycle. It should be noted that the best layout of truss structure (i.e. the best 

particle) that each particle has visited since the first iteration is selected as the base point 

necessary to construct the convex approximation for MMA in the subsequent layout 

optimization cycle. This approach allows the convergence to optimum design to be speeded 

up. 

The basic steps of the hybrid optimization algorithm can be outlined as follows: 

Step 1: Set internal parameters of IDPSO ( ,, 21 cc ) and population size of IDPSO 

(NPSO). Also set the limit number of optimization iterations (lmax). 

Step 2: Randomly initialize positions )( 0

iX as initial cross-sectional areas of elements 

with the initial configuration of truss structure and velocities )( 0

iV  for PSON,i ...,,21 . 

Step 3: Optimize the layout of the structure with MMA for each particle. 

Step 4: Update 
t

pbestif ,


 for each particle and )min( 1 t

i

t

gbest ff


. 

Step 5: Evaluate structural response and weight for each particle by including the 
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optimized layout variables.  
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Fig. 1. Flow chart for IDPSO-MMA algorithm 

 

Step 8: Update particle velocity 1t

jV  and particle position 1t

jX using Eqs. (5) and (12), 

respectively. 

Step 9: If maxtt  , then stop; otherwise go to step 3. 

Figure 1 shows the flow-chart of the hybrid IDPSO-MMA algorithm developed in this 

study.  To assess the efficiency of the proposed IDPSO-MMA, the optimization is 

performed by using DPSO-MMA and IDPSO-MMA methods at first, and then the optimal 

solutions of IDPSO-MMA is compared with those of DPSO-MMA. The DPSO-MMA 

algorithm is the same IDPSO-MMA algorithm, but Eq. (8) is used in stead of Eq. (12) for 

updating of particle position in step 8, which is mentioned earlier. 
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6. TEST CASES AND RESULTS 

 

Four classical weight minimization problems of truss structures were solved in order to 

check the numerical efficiency of the hybrid IDPSO-MMA algorithm developed in this 

research. Optimization results were compared with data reported in literature. Furthermore, 

the new algorithm was compared to another hybrid algorithm combining standard DPSO 

and MMA. Internal parameters set for the particle swarm optimizer are summarized in Table 

1. 
Table 1: Values of internal parameters set for IDPSO 

Parameter Value 

Swarm size 50 

Cognitive parameter 2.5 

Social parameter 2.5 

Minimum of inertia weight 0.01 

Maximum of inertia weight 0.90 

Maximum number of iterations 200 

 

The values of internal parameters for DPSO are the same as these of IDPSO. In order to 

consider the stochastic nature of the optimization process, ten independent optimization runs 

are performed for DPSO-MMA and IDPSO-MMA methods and the best solutions are 

reported. The methods are coded in MATLAB and structures are analyzed using the direct 

stiffness method.  

 

6.1. Test case 1: Fifteen-bar truss structure 

The fifteen-bar truss shown in Fig. 2 is subjected to a concentrated load of 44.537 kN acting 

downward at node 8. The Young modulus of the material is 68.95 GPa while mass density is 

2720 kg/m3. Design variables are listed in Table 2: this test case included 15 sizing variables 

and 8 layout variables. The optimization constraints with allowable stress limits and side 

limits are presented in Table 3 which also includes the list of available cross-sectional area 

values. 

 

 
Fig. 2. Configuration of fifteen-bar truss 

 

Table 2: Optimization variables for the fifteen-bar truss problem 
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iA ; i=1, 2, 3, … ,15 Sizing 
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Table 3: Optimization constraints for the fifteen-bar truss problem 

 

Table 4 represents a comparison between the cross-sectional areas and node coordinates 

obtained by DPSO-MMA and different researchers together with the corresponding weight 

for the fifteen-bar truss. It can be seen that IDPSO-MMA performed better than DPSO-

MMA and other optimization techniques and found lighter structures while satisfying all the 

constraints. The optimized layout of the structure is shown in Fig. 3.  

Figure 4 compares the convergence curves recorded for IDPSO-MMA and DPSO-MMA. 

It can be seen that the proposed algorithm implementing the new discrete PSO particle 

update scheme was considerably faster. 

 

 

Fig. 3. (a) Optimal layout of the fifteen-bar truss, (b) The layout of the nodes 4 and 8. 

 

Table 4: Optimization results for the fifteen-bar truss problem 

IDPSO-

MMA 

DPSO-

MMA 

Rahami 

et al. [34] 

Wenyan  

[33] 

Hwang 

and He 

[32] 

Wu and 

Chow [31] 

        Design                     

                 variables 

15,...,2,1,4.172  iMPai  Stress limit 

Constraint data 

cmxcm 6.355254 2   
cmxcm 4.6608.558 3   

cmycm 6.355254 2   

cmycm 6.355254 3   
cmycm 6.228127 4   
cmycm 8.508.50 6   
cmycm 8.508.50 7   
cmycm 4.1528.50 8   

Side limit on 

layout variables 

SAi {0.716,0.910,1.123,1.419,1.742,1.852,2.239,2.839,3.477,6.155,6.

974,7.574,8.600, 9.600, 11.381, 13.819, 17.400, 18.064, 20.200, 23.00,24.6, 

31.0, 38.4, 42.4, 46.4, 55.0, 60.0, 70.0, 86.0, 92.193, 110.774, 123.742} 2cm  

List of the 

available profiles 
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7.574 7.574 6.974 6.155 0.954 7.574 1A  

Sizing 

variable 

(cm
2
) 

3.477 3.477 3.477 6.974 1.081 6.155 2A  

0.910 1.852 1.852 2.839 0.440 2.839 3A  

6.155 6.155 6.155 7.574 1.174 8.600 4A  

3.477 3.477 3.477 9.600 1.488 6.155 5A  

1.852 1.852 0.910 1.742 0.270 1.123 6A  

0.716 0.716 0.716 1.742 0.270 2.839 7A  

0.716 0.716 0.716 2.239 0.347 2.839 8A  

0.910 2.239 3.477 1.419 0.220 6.974 9A  

2.239 2.839 2.839 2.839 0.440 8.600 10A  

2.839 3.477 3.477 1.419 0.220 1.123 11A  

1.852 1.852 1.742 2.839 0.440 1.123 12A  

1.852 1.419 1.419 2.239 0.347 2.239 13A  

1.852 1.852 0.910 1.750 0.270 2.239 14A  

0.910 1.852 1.852 1.419 0.220 2.839 15A  

254.00 254.00 258.007 339.375 300.600 312.900 2x  

Layout 

variable 

(cm) 

583.330 660.400 578.894 596.270 572.031 588.251 3x  

332.635 347.350 342.388 255.141 302.377 272.260 2y  

324.489 285.846 325.680 266.035 266.918 302.704 3y  

133.516 127.00 139.352 187.356 160.973 153.574 4y  

-32.177 -23.071 -41.779 -25.570 -50.800 -42.489 6y  

-50.800 1.879 -33.784 -3.401 -50.800 -39.535 7y  

133.116 126.620 139.337 128.021 146.614 93.078 8y  

34.33 37.04 34.77 36.21 47.43 54.67 Weight (kg)  
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Fig. 4. Comparison of the convergence rates between the IDPSO-MMA and the DPSO-MMA 

 

6.2. Test case 2: Michell arch 

The Michell semi-circular arch shown in Fig. 5 must be designed for minimum weight.  The 

arch is subject to a load of 200 kN acting downward at node 1. The Young modulus of the 

material is 210 GPa while mass density is 7800 kg/m3. This optimization problem has an 

analytical solution if allowable stresses in tension and compression are equal [35]: 

 

)
12

(tan
12 




LPW


  

 

where L is the length of half span, which in this example is equal to 1 m; and   is the 

allowable stress in tension. 

During the optimization process of the arch, nodes 3 and 7 are shifted in horizontal 

direction and nodes 4, 5 and 6 in vertical direction, respectively. The structural symmetry is 

maintained. Therefore, only the coordinate of two nodes are variable in the optimization 

process. The members of truss are classified into seven groups to represent seven variables 

of cross-section areas that shown in Table 5. The design variables are given in Table 6. The 

constraint data and cross-section areas of elements are listed in Table 7.  

Table 8 represents a comparison between the cross-sectional areas and node coordinates 

obtained by DPSO-MMA together with the corresponding weight for the fifteen-bar truss. It 

can be seen that IDPSO-MMA performed better than DPSO-MMA and found lighter 

structures while satisfying all the constraints. The optimized layout of the structure is shown 

in Fig. 6. 
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Fig. 7 compares the convergence rate between IDSPO-MMA and DSPO-MMA for this 

example. It can be seen that the proposed algorithm implementing the new discrete PSO 

particle update scheme was considerably faster. 

 

 

Fig. 5. Configuration of Michell arch 

 
Table 5: Element group linking for the Michell arch problem 

Members (end nodes) Group 

1 (1, 2), 8(1, 8) A1 

2 (2,3) ,7 (7,8) A2 

3 (3,4) ,6 (6,7)  A3 

4 (4,5) ,5 (5,6) A4
 

9 (1,3) ,13 (1,7) A5 
10 (1,4) ,12 (1,6) A6 

11 (1,5) A7 
 

Table 6: Optimization variables for the Michell arch problem 

iA ; i=1, 2, … ,7 Sizing 

73 xx  , 64 yy  , y5 Layout 
 

Table 7: Optimization constraints for the Michell arch problem 

13,...,2,1;240  iMPai  Stress limit 

Constraint data 

 .83  1, mmy   Displacement limit  

)(10 3 mx   
)(10 4 my   

)(10 5 my   

Side constraints on 

layout variables 

)}(5...,,04.1,03.1,02.1,01.1{ 2cmSAi   
List of the 

available profiles 
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Table 8: Optimization results for the Michell arch problem 

 

 

Fig. 6. Optimal layout of the Michell arch 

 
Fig. 7. Comparison of the convergence rates between the IDPSO-MMA and the DPSO-MMA 

IDPSO-

MMA 

DPSO-

MMA 

Wang et 

al.[35] 

Exact 

solution 
Design variables 

1 1.16 1.132 1.116 A1 

Sizing 

variable 

(m2) 

4.28 4.51 4.318 4.314 A2 

4.42 4.36 4.315 4.314 A3 

4.62 4.95 4.311 4.314 A4
 

2.83 1.16 2.201 2.233 A5 
2.02 2.63 2.262 2.233 A6 
2.13 2.96 2.209 2.233 A7 

0.926 0.871 1.000 1.000 5y  
Layout 

variable (m) 
0.808 0.834 0.867 0.866 6y  

0.882 0.123 0.864 0.866 3x  

21.07 22.57 20.90 20.9 Weight (kg) 
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6.3. Test case 3: Twenty five-bar truss structure 

A twenty five-bar truss is considered as shown in Fig. 8. The coordinates of the nodes are 

listed in Table 9. The members of truss are classified into eight groups to represent eight 

variables of cross-section areas. The member grouping is shown in Table 10. Table 11 lists 

the values and directions of the loads applied to the truss. The Young modulus of the 

material is 68.95 GPa while mass density is 2720 kg/m3. The constraint data and the design 

variables are presented in Tables 12 and 13. The cross-section areas of elements are selected 

from Table 13.  

 

Fig. 8. Configuration of twenty five-bar space truss 

 

The comparison of the results with those of the other references is provided in Table 14. 

It can be seen that IDPSO-MMA performed better than DPSO-MMA and other optimization 

techniques and found lighter structures while satisfying all the constraints.  

 

Tbale 9: Nodal coordinates of the initial configuration considered for the spatial twenty five-

bar truss problem 

z (cm) y (cm) x (cm ) Node 

508 0.0 -95.25  1 

508 0.0 95.25  2 

254 95.25 -95.25  3 

254 95.25 95.25  4 

254 -95.25 95.25  5 

254 -95.25 -95.25  6 

0.0 254 -254  7 

0.0 254 254  8 

0.0 -254 254  9 

0.0 -254 -254  10 
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Table 10: Element group linking for the spatial twenty five-bar truss problem 

Members (end nodes) Group 

1 (1, 2) 
1A  

2 (1,4) ,3 (2,3) ,4 (1,5) ,5 (2,6) 
2A  

6 (2,5) ,7 (2,4) ,8 (1,3) ,9 (1,6) 
3A  

10 (3,6) , 11 (4,5) 
4A  

12 (3,4) , 13 (5,6) 
5A  

14 (3,10) , 15 (6,7) , 16 (4 ,9) , 17 (5,8) 
6A  

18 (3,8) , 19 (4,7) , 20 (6,9) , 21 (5,10) 
7A  

22 (3,7) , 23 (4,8) , 24 (5,9) , 25 (6,10) 
8A  

 
Table 11: Loading acting on the twenty five-bar truss problem 

Fz kN
 

Fy kN
 

Fx kN
 

Node 

-44.537 
 

-44.537 
 

4.454 
 

1 

-44.537 
 

-44.537 
 

0.0 2 

0.0 0.0 2.22 
 

3 

0.0 0.0 2.672 
 

6 

 
Table 12: Optimization variables of the spatial twenty five-bar truss problem 

1A ; 
2A ; 3A ; 

4A ; 5A ; 6A ; 7A ; 8A  Sizing 

6354 xxxx  ; 10798 xxxx   

6543 yyyy  ; 10987 yyyy  ; 

6543 zzzz   

Layout 

 
Table 13: Optimization constraints for the spatial twenty five-bar truss problem 

       25218275 , . . . , , i;MPa.        i  Stress limit 

Constraint 

data 

6 , . . . 1,   ; .89cm0   ii  
Displacement 

limit ( all directions 

coordinate) 

cmxcm 4.1528.50 4   

cmycm 2.2036.101 4   

cmzcm 2.3306.228 4   

cm.xcm. 22036101 8   

cmycm 6.355254 8   

Side constraints 

on layout variables 

iA S = {0.645I (I = 1, . . . , 26), 18.064, 19.355, 20.645, 21.935} 2cm  
List of the 

available 

profiles 
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Table 14: Optimization results for the spatial twenty five-bar truss problem 

IDPSO-

MMA 

DPSO-

MMA 

Rahami 

et al [34] 

Kaveh  

and 

Kalatjari 

[36] 

Wu and 

Chow [31] 
Design variables 

0.645 0.1 0.645 0.645 0.645 
1A  

Sizing 

variable 

(cm2) 

0.645 0.1 0.645 0.645 1.29 
2A  

6.4516 1.1 7.097 7.097 7.097 
3A  

0.645 0.1 0.645 0.645 1.29 
4A  

0.645 0.2 0.645 0.645 1.935 
5A  

0.645 0.1 0.645 0.645 0.645 
6A  

0.645 0.1 1.29 0.645 1.29 
7A  

5.806 0.9 5.16 6.452 5.806 
8A  

95.008 37.205 83.9436 92.024 104.318 4x  

Layout 

variable (cm) 

140.694 60.598 136.0584 148.742 135.814 4y  

330.2 00 121.862 329.9694 293.599 316.484 4z  

138.200 52.690 111.2078 118.008 129.032 8x  

355.600 140 347.569 324.993 333.959 8y  

53.35 56.03 54.53 56.29 61.83 Weight (kg) 

 

Optimal layout for the truss is shown in Fig. 9. Fig. 10 compares the convergence rate 

between IDSPO-MMA and DSPO-MMA for this example. It can be seen that the proposed 

algorithm implementing the new discrete PSO particle update scheme was considerably 

faster. 

 

Fig. 9. Optimal layout of the twenty five-bar space truss 
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Fig. 10. Comparison of the convergence rates between the IDPSO-MMA and the DPSO-MMA 

 

6.4. Test case 4: Thirty nine-bar tower 

A triangular tower with the given configuration is shown in Fig. 11. The bottom and top 

nodes are fixed while all the intermediate node positions will be redesigned. The coordinates 

of three bottom nodes 1, 2, 3 and three top nodes 13, 14 and 15 are given in Table 15. The 

members of truss are classified into five groups to represent five variables of cross-section 

areas. The member grouping is shown in Table 16. Table 17 lists the values and directions of 

the loads applied to the tower. During the optimization process, the structural symmetry is 

remained, which implies that there are only 6 shape variables: y4, z4, y7, z7, y10, z10. The list 

of variables is presented in Table 18. The displacement of node 13 in the y-direction must 

not exceed a given limit of 4 mm. The constraint data and the design variables are presented 

in Tables 19. The cross-sectional areas of elements are selected from Table 19. 

 
Table 15: Nodal coordinates of the fixed nodes (top and bottom sides) of the thirty nine-bar truss 

problem 

Top nodes  Bottom nodes 

z (m) y (m) x (m) Number  z (m) y (m) x (m) Number 

4 0.28 0 13 0 1 0 1 

4 -0.14 

0.42

3


 

14 0 -0.5 
2

3
  2 
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4 -0.14 
3

42.0
 15 0 -0.5 

2

3
 3 

 

Fig. 11. Configuration of thirty nine-bar tower 

 
Table 16: Element Group linking for the thirty nine-bar truss problem 

End nodes Group 

(1,4), (2,5), (3,6) 
1A  

(4,7), (5,8), (6,9) 
2A  

(7,10),(8,11), (9,12) 
3A  

(10,13),(11,14), (12,15) 
4A  

Rest of the elements 
5A  

 
Table 17: Loading acting on the thirty nine-bar truss problem 

Fz kN
 

Fy kN
 

Fx kN
 

Node 

0 10 0 
 

13,14,15 

 
Table 18: Optimization variables for the thirty nine-bar truss problem  

1A ; 
2A ; 3A ; 

4A ; 5A   Sizing 

4y , 4z , 7y , 7z , 10y , 10z  Layout 

 
Table 19: Optimization constraint for the thirty nine-bar truss problem 

39,...,2,1;240  iMPai  Stress limit 

Constraint 

data 
 4  13, mmy   Displacement limit 

)(2)(0 4 mzm   Side constraints on 
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)(3)(1 7 mzm   
)(4)(2 10 mzm   
)(1)(28.0 4 mym   
)(1)(28.0 7 mym   
)(1)(28.0 10 mym   

layout variables 

)}(13...,,4.0,3.0,2.0,1.0{ 2cmSAi  

List of the 

available 

profiles 

 

The comparison of the results with those of Wang et al. [35] is provided in Table 20. 

Optimum weight obtained by IDPSO-MMA is about 16% and 3.5% lighter than those in 

Ref. [35] and DPSO-MMA while satisfying all the constraints. 

 
Table 20: Optimization results for the thirty nine-bar truss problem 

IDPSO-

MMA 

DPSO-

MMA 

Wang et 

al.[35] 
Design variables 

13 10.12 11.01 A1 

Sizing 

variable (cm2) 

9.6 9.91 8.63 A2 

8.2 8.56 6.69 A3 

3 3.92 4.11 A4 

13 3.44 4.37 A5 

9.6 10.12 11.01 A6 

0.786 0.6683 0.805 4y  

Layout 

variable (m) 

1.330 1.9 1.186 4z  

0.417 0.4732 0.654 7y  

2.920 2.8734 2.204 7z  

0.360 0.3002 0.466 10y  

3.193 3.4415 3.092 10z  

170.607 176.834 203.18 Weight (kg) 
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Fig. 12. Optimal layout of thirty nine-bar tower 

Optimal layout for the truss is shown in Fig. 12 and Fig. 13 compares the convergence 

rate between IDSPO-MMA and DSPO-MMA for this example. It can be seen that the 

proposed IDPSO-MMA implementing the new discrete PSO particle update scheme was 

considerably faster. 

 
Fig. 13. Comparison of the convergence rates between the IDPSO-MMA and the DPSO-MMA 

 

6.5. Test case 5: Eighteen-bar truss structure 

In the example the aim is to optimize the cross-section size and layout of an eighteen-bar 

truss shown in Fig. 14 subject to stress and Euler buckling stress constraints. Optimization 

variables of the spatial structure are listed in Table 21. The constraint data and the design 

variables are presented in Tables 22. The Young modulus of the material is 68.95 GPa while 
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mass density is 2720 kg/m3. The single loading condition is a set of vertical loads acting on 

the upper joints of the truss. The lower joints 3, 5, 7 and 9 are allowed to move in any 

direction in the x-y plane. The sections are taken from a profile list S of 80 sections starting 

with an area of 12.903 cm2 increasing in the steps of 1.613 cm2 to 140.322 cm2. For layout 

variables, a precision of 2.54 cm is considered.  

 

 

Fig. 14. Configuration of eighteen-bar truss 

The results of the size/layout optimization using the IDSPO-MMA method are compared 

to those of other references in Table 23. It can be seen that IDPSO-MMA performed better 

than other optimization techniques and found lighter structures while the stress constraint is 

violated about 0.47%. Optimal layout for the truss is shown in Fig. 15. 
 

Table 21: Optimization variables for the eighteen-bar truss problem  

1612841 AAAAA  ; 
181462 AAAA  ; 

151173 AAAA  ; 
171395 AAAA   

Sizing 

3x ; 3y ; 5x ; 5y ; 7x ; 7y ; 9x ; 9y  Layout 

 
Table 22: Optimization constraint for the eighteen-bar truss problem 

18,...,2,1;9.137  iMPai  Stress limit 

Constraint 

data 

18,...,2,1;4,/ 2

,  iLAE iiic   
Euler buckling 

stress limit 

)(223.6,,,)(715.5 9753 myyyym   
)(115.31)(685.19 3 mxm   
)(765.24)(335.13 5 mxm   
)(415.18)(985.6 7 mxm   
)(065.12)(635.0 9 mxm   

)(1)(28.0 10 mym   

Side constraints on 

layout variables 

)}(322140,709138,...,51614,90312{ 2cm....SAi  

List of the 

available 

profiles 
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Fig. 15. Optimal layout of eighteen-bar truss 

 

 

 
Table 23: Optimization results for the Eighteen-bar truss structure 

IDPSO-

MMA 

Hasancebi 

and Erbatuer 

[37] 

Kaveh and 

Kalatjari [36] 

Rahami et 

al. 

[34] 

Design variables 

80.645 80.645 79.032 82.258 1A  

Sizing 

variable 

(cm
2
) 

119.356 117.742 116.128 119.356 2A  

30.645 35.484 33.871 30.645 3A  

22.581 24.194 27.419 20.967 5A  

23.432 23.698 23.190 23.303 2x  

Layout 

variable (m) 

4.994 4.775 4.744 4.922 2y  

16.740 16.713 16.510 16.619 5x  

4.021 3.759 3.822 4.062 5y  

10.841 10.718 10.637 10.782 7x  

2.707 2.540 2.474 2.758 7y  

5.316 5.207 5.201 5.295 9x  

0.883 0.813 0.678 0.955 9y  

2035.85 2038.82 2046.55 2058.43 Weight (kg)  

At the present work, Max stress = 138.55 MPa 
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7. CONCLUSIONS 

 

In this paper, hybrid of an improved discrete particle swarm optimization (IDPSO) and 

method of moving asymptotes (MMA) is presented to find the optimal size and layout of the 

truss structures subject to displacement and stress constraints. The optimal size and layout of 

the truss structures simultaneously deal with mixed discrete and continuous variables. Due 

to this fact, the hybrid of IDPSO and MMA consisting of two stages for the size and 

geometry optimization is used. The IDPSO-MMA can increase the probability of finding the 

near global optimum. The main idea behind the proposed IDPSO-MMA is to combine the 

advantages of IDPSO and MMA methods in the two search spaces. In the first stage, the 

layout of truss structure is optimized with MMA by including only the nodal coordinates as 

design variables. In the second stage of the optimization process, IDPSO is utilized to 

update sizing variables and to find the global/local best design points with respect to which 

convex approximation is built in the subsequent layout optimization cycle. IDPSO is 

introduced to overcome the limitations of the standard discrete PSO. The truss structures are 

used in the related literature as benchmarks are considered to verify the efficiency of the 

IDPSO-MMA method. The results are shown that the proposed method can effectively 

accelerate the convergence rate and can more quickly reach the optimum design. The 

comparisons of the numerical results performed using the IDPSO-MMA method 

demonstrate the robustness of the proposed method. 
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