
 

 
 
 
 

FORCED WATER MAIN DESIGN; MIXED ANT COLONY 
OPTIMIZATION 

 
 

S. Madadgar1*, †, A. Afshar2 
1Department of Civil and Environmental Engineering, Portland State University, Portland, 

OR 97207, USA 
2Department of Civil Engineering, Iran University of Science and Technology, Narmak, 

Tehran 16844, Iran 
 
 
 

ABSTRACT 
 

Most real world engineering design problems, such as cross-country water mains, include 
combinations of continuous, discrete, and binary value decision variables. Very often, the 
binary decision variables associate with the presence and/or absence of some nominated 
alternatives or project’s components. This study extends an existing continuous Ant Colony 
Optimization (ACO) algorithm to simultaneously handle mixed-variable problems. The 
approach provides simultaneous solution to a binary value problem with both discrete and 
continuous variables to locate and size design components of the proposed system. This 
paper shows how the existing continuous ACO algorithm may be revised to cope with 
mixed-variable search spaces with binary variables. Performance of the proposed version of 
the ACO is tested on a set of mathematical benchmark problems followed by a highly 
nonlinear forced water main optimization problem. Comparing with few other optimization 
algorithms, the proposed optimization method demonstrates satisfactory performance in 
locating good near optimal solutions. 
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1. INTRODUCTION 
 

Many engineering design problems, such as water supply and sewage, water distribution 
network, and cross-country water mains, include both continuous and discrete decision 
variables. Optimum design of cross-country water mains and associated pumping stations is 
a relatively complex problem due to its mixed continuous-discrete decision space.  
Simultaneous consideration of both discrete variables (i.e. pipe diameter, and pressure 
classes) and continuous ones (i.e. pumping head) demands an especial algorithm capable of 
handling such mixed variable problems. Traditionally, either the continuous decision space 
is discretized which transforms the mixed problem into a discrete one, or the discrete 
variables are treated as continuous ones and rounded off when the final solution is found and 
search process is terminated. Both approaches find an approximate solution to the mixed 
variable problem. Employing the latter approach, it may be formulated as linear and/or 
nonlinear programming problem ([1] and [2]). The former approach is, however, much more 
common. Employing the former approach, it may be formulated as a dynamic programming 
( DP ) problem under discretized decision space. As an example, [3] employed DP  to find 
optimal solution to an approximation of the complete pipeline design problem. The solution 
provided the number and size of pumping stations, diameters, and pressure classes of the 
pipeline segments at the beginning of each stage interval over the planning period. A DP  
model is developed in [4] to optimally integrate hydropower plants into a cross country 
water supply main.  

The optimal design problem of water distribution systems using the real-coded genetic 
algorithm is solved by [5] to find the discrete values for pipe diameters. According to them, 
this methodology avoided the problem of redundant states often found when using binary 
(and Gray) coding schemes. Disregarding the discrete nature of some design variables, [2] 
employed a non-linear mixed integer programming to optimize the design of a water supply 
pipeline system. [6] conducted the route selection process employing the Geographical 
Information System (GIS) to provide a rational basis for narrowing existing potential 
alternatives into a final alignment corridor. In a more recent work, [1] established a linear 
model for the optimal design of a long distance water transmission system to achieve a 
minimum annual cost. Abbasi  et al. [7] extended a simulation-optimization framework to 
design a water main under transient conditions. They coupled a hydraulic simulation module 
with ant colony optimization algorithm as a meta-heuristic model to find the optimal 
specifications of a pipeline system.  

During the last decade, evolutionary and meta-heuristic algorithms such as Genetic 
Algorithms (GAs), Ant Colony Optimization (ACO), Particles Swarm Optimization (PSO), 
Simulated Annealing (SA), and Honey Bees Mating Optimization (HBMO) have focused on 
solution of problems with nonlinear, non-convex, continuous and/or discrete search spaces 
in water resources optimization problems ([8-16]). A very comprehensive review on 
applications of GAs in water resources planning and management can be found in the study 
by [8].  

Ant colony optimization algorithm was basically presented to solve the problems with 
discrete search spaces ([17-18]). To apply the ACO algorithms to problems with continuous 
domain, the search space is traditionally divided into a discrete set of decision values and 
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agents explore the new domain to find the most desirable solution (Jalali et al., 2007). The 
direct extension of ACO  algorithms to continuous domains has been tackled by different 
researchers ([19-21]). In a quite interesting approach, [22] proposed ACOR algorithm, the 
central core of which is well close to original concept of ACO. Recently, [14] suggested two 
major modifications to improve the performance of ACOR. Benefiting from adaptation 
operator and explorer ants, they significantly improved the results of original ACOR in both 
benchmark mathematical problems and a real-world reservoir operation optimization 
problem.  

Realizing the existence of many mixed-variable problems with continuous and discrete 
decision and/or state variables in various fields of engineering and particularly in water 
resources engineering, this article proposes an ant colony optimization algorithm that 
directly tackles the optimization problems with mixed variable domains. It is an extension to 
existing continuous ACOR algorithm ([14] and [22]) which has been modified   to 
simultaneously deal with mixed-variable problems. In the following sections, the basic 
concept of the improved ACOR is presented, and the proposed modifications to enable the 
algorithm handling both kinds of variables are addressed. The performance of the algorithm 
is, then, tested on some mathematical functions and compared to those of other algorithms. 
Finally, to assess the potential of its application to water resources engineering problems, the 
optimum design of a real-world highly non-linear forced water main is discussed 

 
 

2. ANT COLONY OPTIMIZATION ALGORITHM FOR CONTINUOUS 
DOMAIN 

 
Ant colony optimization algorithms borrow the same concept from real ants’ foraging 
behavior. At each decision step in ACO algorithms, the pheromone affect –which resembles 
the real ants’ foraging behavior- is simulated by a probability rule. The probability rule in 
the original Ant System  AS ([18]) is defined as following:  

 

        
     

setallowablec
ct

ct
tscp ijJ

j
ijij

ijijp
ij 




,
.

.
,|

1








 (1) 

 
Where,  tscp p

ij ,  is the probability of selecting the solution component ijc  at step i  in 

iteration t ;  tij  is the pheromone value associated with component ijc  at iteration t ;  .  

assigns the heuristic value to the solution component ijc ;   and   are two parameters 

representing the relative importance of the pheromone trail and heuristic value; and i  is the 
current construction step including j  component solutions in the allowable set.  

The probability function defined as Eq.1 forms a discrete probability distribution over the 
allowable set of decision values at each construction step (Figure 1a). The approach is well 
suited for solution of problems with discrete variables. For continuous search spaces with 
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continuous decision variables, however, ants must sample from continuous probability 
distribution functions over the search space. Dreo and Siarry [22] applied the probability 
density function  to model the probability distribution over the continuous search space. In 
this case, ants are allowed to sample continuous values instead of a finite set of solution 
components in Eq. (1).  They employed Gaussian Probability Density Function (PDF) to 
represent the probability of continuous search domain. In order to overcome the main 
shortcoming of a single Gaussian function in modeling multimodal areas, a Gaussian kernel 
PDF replaces the individual PDF which provides a more flexible sampling over search space 
(Figure 1b). The Gaussian kernel PDF is defined as weighted superposition of several 

Gaussian functions  xg i
l  as  xGi  ([22]): 
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Where, k  is the number of individual PDFs forming the Gaussian kernel pdf at thi  

construction step; ω , iμ  and iσ are the vectors of size k  defining the weights, means and 

standard deviations associated with the individual Gaussian functions at thi  construction 
step, respectively. 
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(a)       (b)  
Figure 1. Schematic of a) discrete probability distribution of a set of allowable components 
 91,..., ii cc in construction step i , b) continuous probability density function with a possible 

range of  maxmin , xxx  ([14]; adopted from [22]). 

 
To conduct the pheromone updating process, an archive T  is defined to store the 

decision values of a certain number  k  of the superior solutions. To fill the archive, after a 
complete iteration, all already-archived and newly constructed solutions are evaluated by the 
fitness function and then ranked according to their fitness values. Then, the superior k  
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solutions with their decision values, i
ls ; the thi  component of solution with rank l are 

archived in order and  rest of the solutions  are discarded.    
The shape of the Gaussian kernel PDF at each construction step is identified by the 

vectors ω , iμ , and iσ which are determined by the archived solutions. [22] represented the 

mathematical formulation of these three vectors components at thi construction step as shown 
in Table 1. A brief description for identification and clarification of different parameters of 
each Gaussian kernel PDF is presented in Appendix A.  

 
Table 1. Mathematical presentation of the thl component of the vectors at thi  construction step    

(Proposed in [22]) 
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Since sampling the Gaussian kernel PDF is painstaking effort, each ant, before starting 

the solution construction procedure, chooses a single solution from the archive. Then, at any 
construction step, it samples the PDFs associated to the chosen solution.. Therefore, the 
complex task of sampling the Gaussian kernel PDFs is simplified to sampling the individual 
PDFs. As superior solutions should definitely have more chance to be chosen by the agents, 
the following probability function is defined to express the chance of selecting the thl  
solution in the archive ([22]):  
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The Gaussian distribution of l has the standard deviation of qk , where q  is a tunable 

parameter of the algorithm. The value of this parameter has a significant effect on 
convergence rate of the algorithm. Large values of q  cause the algorithm to widely search 
the decision space in expense of slow convergence to the final solution. In the case of very 
small values of q , the search process is seriously narrowed around the best found solutions, 
and rapid pre-mature convergence occurs.  

To ensure the reliability of the final solution, agents must widely explore the decision 
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space at initial search stages and gradually narrow around the best solutions. To do so, [14] 
proposed the Adaptation Operator which encourages the agents to concentrate on high 
qualified areas after a diverse and comprehensive exploration over the space. For this 
purpose, their model initiates with a relatively large value of q which is adaptively reduced 

along with algorithm progress. The following expressions describe how the adaptation 
operator alters the search diversity through sequential iterations ([14]): 
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 (4) 
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In which, itA  is the value of adaptation operator in iteration it ;  mfMean ...1  and 

 nfMean ...1  are the mean values of fitness function over first m and n  nm    archived 

solutions at any iteration, respectively. The terms  it.  and   1. it  refer the expression between 

the parentheses to the iterations it and 1it , respectively.  
 The value of itA  in Eq. (4) should be less than or equal to one. Then, when a 

minimization problem is the case (i.e. the solution ranked 1st has the least fitness value), m  
should be less than n  in Eq. (5). This ensures the non-increasing trend of the value of 
adaptation operator and, consequently, the parameter q . Moreover, Eq. (5) illustrates the 
necessity of improvement in archived solutions as the required condition to reduce the value 
of itA . Madadgar and Afshar [14] described how archive updating affects the value of 

adaptation operator and search diversity.  
As implied from the definition of i

l
i
l s , one may note the severity encountered when 

the agents trap in local optimums. When, at some solution construction steps, the values 

of i
l  of almost all single PDFs become relatively the same, the values of associated i

l will 

approach to zero. That is, the mode values of those Gaussian PDFs acquire very large 
probabilities, and the agents will be naturally encouraged to search through those small 
areas. Therefore, the agents will seriously trap in sub-optimum points, and even jumping to 
other PDFs will not further change the result. To help escaping from local optimums, [14] 
employed Explorer Ants. The proposed explorer ants are permitted to probabilistically 
mutate the trial value sampled from any Gaussian function within a specified Mutation 
Range that may be defined as:  
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Where, i
itMR  is the mutation range; x  is the initial trial value sampled from the Gaussian 

PDF; i
itσ is the vector of standard deviation for Gaussian PDFs; i  and it  denote the current 

construction step and current iteration, respectively. 
In Eq. (6), the mutation range is expressed as a function of standard deviation, i.e.  i

itf σ . 

Since the values of standard deviations regularly change in consecutive iterations, the 
mutation range varies through the advancement of the algorithm.  

Explorer ants are less imposed and given the chance of more random exploration of the 
search space. The definition of these ants reduces the impact of PDFs on the search process, 
especially when the agents trap in local optimums.  

Inclusion of the adaptation operator and explorer ants in the original algorithm, RACO  

([22]), has reasonably improved the performance of the proposed algorithm in some well-
known mathematical test functions and operation of the real-world hydropower reservoirs 
([14]).  

 
 
3. PROPOSED ACO ALGORITHM FOR MIXED-VARIABLE PROBLEMS 
 

The convincing performance of the continuous ACO algorithm discussed in previous section 
inspired the authors to extend the algorithm to mixed-variable problems. In following, a 
simple but efficient procedure is demonstrated which enables the described continuous 
model to tackle the discrete variables, as well.  

 

2 3 4 5 6

Gaussian kernel pdf on virtual continuous range

Allowable discrete values

Solution in virtual 
continuous range

Final solution in 
disceret domain

 

Figure 2. Schematic of handling the discrete variables by proposed approach 
 
To handle both discrete and continuous variables in a search space, two distinct 

approaches may be regarded. In first approach, one may employ distinct ACO methods 
towards solving each type of decision variables. In one hand, the agents employ an original 
form of ACO as to search through the discrete domains. In the other hand, for continuous 
domains, an ACO developed for continuous search space is applied. Hence, this approach 
benefits from a combination of ACO algorithms instead of a single one. In a second 
approach, a single ACO may be employed for both types of search spaces. This study 
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follows the second approach. To handle the discrete domain, discrete decision space is 
regarded as sub-domain of a larger virtual continuous domain (Figure 2). The ACO 
algorithm explained in previous section searches for the best continuous values for all 
decision variables. Then, it converts the values associated to discrete variables to the closest 
discrete values. As an example, let’s assume a discrete variable is allowed to take values 
from the set  5,3,2A . Then, the virtual continuous range  6,2  is fitted by the Gaussian 

kernel PDF. Now, the agents construct their solutions through this continuous domain, and 
the decisions are then converted to the lower discrete values which belong to the actual 
discrete domain. Afterwards, the solutions are evaluated by the fitness function, and the 
algorithm steps into the next iteration. Figure 3 clearly shows the steps of the algorithm. As 
seen, the algorithm makes the agents sample from continuous values for both continuous 
and discrete decision variables. If the transformations are made towards the lower value of 
continuous subdivisions, the upper end of entire continuous range is regarded as the next 
discrete value to the greatest allowable one. Accordingly, any discrete value in allowable 
set, except the smallest one, belongs to two contiguous subdivisions; one with greater and 
the other one with smaller continuous values. In this case, the transformation process 
imposes no bias towards any certain discrete value. Each agent is evaluated by the fitness 
function just after a complete solution is constructed and transformation to discrete values 
for according variables is accomplished. The procedure above can be mathematically 
expressed as: 
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Where Z is the objective function to be optimized; X and Y are the vectors of discrete and 
continuous variables, respectively; and g(.) is the transformation function mapping values of 
(X’) from virtual continuous domain to the discrete domain. 

There are two subtle points inherent in the proposed approach to handle the mixed-
variable problems. The first one is due to the archiving theme of discrete variables. This 
study suggests saving the virtual continuous values of discrete variables when archiving 
procedure is in action. In other words, the archived value of a discrete variable is its 
continuous value and not its discrete value obtained after transformation process. The 
advantage of such archiving theme is to avoid immature convergence of the algorithm 
towards the integer values shared by several solutions in the archive. If the actual discrete 
values obtained after transformation process were saved in the archive and there were 
several archived solutions with the same discrete value for a certain integer variable, the 
search process may rapidly  converge to that discrete value and the standard deviation of 
Gaussian PDFs would quickly approach zero. In a study by [23], the discrete values of 
integer variables are archived instead of the continuous values, and thus a lower bound for 
standard deviation of Gaussian PDFs of integer variables is defined to have control on 
convergence speed. Definition of the lower bound of standard deviation is itself subjective 
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to the number of integer variables in the optimization problem. However, archiving the 
continuous values of discrete variables as suggested by this study avoids too quick 
convergence to an integer value.  

The second subtle point is the establishment of transformation process before the fitness 
evaluation. If inversely, the remarkable inaccuracy in solution assessment is highly 
probable. For clarification purpose, let’s assume the mathematical problem as follow: 
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Figure 3. Schematics of proposed ant colony algorithm for mixed-variable problems 
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The decision and feasible spaces for the mentioned problem with two discrete decision 
variables are depicted in Figure 4. If a continuous Linear Programming (LP) solver is 
employed, the optimum solution will be located at point A (Figure 4). Note that if point A is 
transformed to upper discrete value (i.e. point 2; 2 xB ), a non-feasible solution will be 

resulted. If it is transformed to the lower discrete value (i.e. point 1; 2 xC ), the resulted 

solution is quite far away from the optimal solution which indicates as    2,0, 21 xx . It is 
obvious that the algorithm operates and selects the solution in the continuous space, and the 
transformation process to discrete space is done after fitness evaluation. That is, in 
advancement of the method, all decisions are made in the continuous space; which may 
mislead the model to unfavoured spaces. Therefore, the final late transformation process is 
unable to further modify the result. 

 

Feasible Space

0

1

2

3

0 1 2 3 x1

x2

Point A

Point B

Point C

Optimum Solution

 

Figure 4. Graphic scheme of the optimization problem defined as Eq. 8 
 

This simple example clarifies the importance of establishing the transformation process 
before the fitness evaluation in the proposed procedure. As the present model advances, the 
fitness value is not assigned to any agent unless its decision values are all located in 
allowable continuous and/or discrete spaces. In the case, the model is not progressed 
towards misleading areas in the virtual continuous space; and the final solution is highly 
reliable. In other words, if the fitness of any solution is evaluated after transformation to 
discrete values, then the optimal solution will be more likely accessible. It should be noted 
that the problem is solved using the proposed algorithm and the global optimum solution is 
obtained after 8 function evaluations. 

When it comes to real world design problems, before sizing, the designer must initially 
decide on the presence and/or absence of some nominated alternatives or project’s 
components. This means one has to simultaneously solve a binary value problem and a 
continuous ACO to locate and size design components of the proposed system. As an 
example, in application of ACO based algorithms to cross-country pipeline design, before 
sizing, the designer must decide on existence and/or absence of a pumping station in a given 
node. Please note that, if pump is not to be assigned to a given node, agents in the proposed 
algorithm must sample exact value of zero form kernel PDF. To resolve this problem one or 
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more “zero solutions” are added to the archive in the division of continuous variables. Zero 
solutions are added to the part of discrete-continuous variables (mixed variables) in the 
archive. Each mixed variable in the zero solution taking the value of zero implies the 
absence of that design component or alternative. The rank of this solution is arbitrary. If 
inclusion of that design component is slightly promised, the zero solution enters the archive 
with rank 1st. If an agent chooses a solution other than the zero solution, the associated 
design component or alternative is nominated as a potentially good solution and the 
generated value is assigned to that variable. Since the archive is able to meet the PDFs and 
not the single values, inclusion of the zero solution is a subtle point of this approach. To 
prevent any conceptual deviation from the central core of the proposed ACO algorithm, it is 
suggested to attribute the Gaussian functions to the zero solution. This may be achieved by 
the Gaussian functions with mean and standard deviation of zero. Such a PDF represents the 
single value of zero. So, any decision value in the zero solution is indicated by the described 
PDF. Definitely, sampling such PDF leads to the value of zero; meaning the absence of the 
associated design variable or alternative in the final solution.  

 
 

4. MODEL APPLICATIONS   
 

This paper employs the proposed approach to a set of previously studied test functions and 
then investigates the performance of the method in a real-world water resources engineering 
problem.  
 
4.1. Test functions   

A set of previously solved benchmark functions are presented in Table 2 to investigate the 
performance of the proposed mixed-variable method ([24]-[25]). The proposed algorithm is 
termed M-IACOR as it modifies the Improved version of ACOR ([14]) to account for Mixed 
variable domains. Table 3 summarizes the most effective parameters of M-IACOR method, 
where   in column 5 is a multiplication factor associated with the standard deviation of 

Gaussian functions ([22]). As used by other researchers, a certain degree of convergence is 
determined as stop criterion for the algorithm ([16]): 

 

 
kkff kkk  

 ,10 5

 (9) 
 

In which, f  is the objective value of the best-found solution; the subscripts, k and kk  , 

indicate the iteration numbers where 50k . To inaugurate any iteration, the stop criterion 
checks whether the required convergence is already satisfied; and if so, the search process 
terminates. In other words, the algorithm is assumed to converge to the best solution if the 
fitness value of the best solution in the thk iteration remains close enough to that obtained 
in k  preceding iterations. 
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Table 2. Summary of test functions 
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Table 3. Summary of parameters used in RIACOM  for test problems  

Problem 
Population 

size 
Archive 

size 
Initial 

value of q 
  

No. of explorer 
ants 

1 3 10 0.1 1.0 1 

2 5 20 0.1 1.0 2 

3 5 20 0.1 1.0 2 
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Results are compared based on the mean number of function evaluations along with the 
percentage of independent runs in which the algorithm has converged to the optimal 
solution. Table 4 presents the performance of different algorithms on test functions. The 
reported values include the mean number of function evaluations and the percentage of 
successful runs over 100 independent performances. For problems number 1 and 2, all tested 
algorithms locate near optimal solutions satisfying the desired criteria in all 100 independent 
runs. However, the number of function evaluations of the proposed method  RIACOM   is 

remarkably less than those of other algorithms. As an example, R-PSO_c ([25]) takes an 
average number of function evaluations of 3500 for problem number 1, whereas the M-
IACOR satisfies the same criterion via an average number of function evaluations of 576. In 
other words, compared to M-IACOR, the next best algorithm (i.e. R-PSO_c) needs 

5
576

5763500



 times extra function evaluations to obtain the same degree of convergence 

to near optimal solution. Other employed algorithms require far more function evaluations 
for the same convergence criterion. This superiority remains more or less valid for other two 
test problems. For problem number 3, in 97 runs out of 100 runs, the proposed method 
converges to near optimal solution within an average number of function evaluations of 761. 
Whereas, among other employed algorithms, R-PSO_c has satisfied the stop criterion for all 
100 runs with remarkably larger number of function evaluations.  

 
Table 4. Performances of different methods on test functions; stop criterion of any algorithm is 

assumed as a certain degree of convergence towards analytical solutions 

Problem GA 1 M-SIMPSA 1 Original PSO 2
 

R-PSO_c 2 M-LACOR 

1 13939/100 14440/100 -3 3500/100 576/100 

2 22489/100 42295/100 -3 4000/100 763/100 

3 102778/60 63751/97 30000/80 30000/100 761/97 
   1 [24] 
  2 [25] 
  3 Converged to non optimal solutions in all executions 

 
To more clarify the impacts of major parameters on the performance of the proposed  

M-IACOR algorithm, the problem number 3 was solved for a range of archive sizes and initial 
values for parameter q . Figure 5 depicts the mean number of function evaluations over 100 

runs versus archive sizes and initial values of parameter q . The values on the bars indicate the 
percentage of successful performances over 100 independent runs. As shown, an increase in 
initial value of q  reveals minor impact on the results. This may be interpreted as the influence 
of adaptation operator which reduces the model sensitivity on initial value of parameter q  
([14]). Adaptation operator provides a rather wide search through decision space in initial steps 
of the model implementation and gradually narrows the search process to the vicinity of more 
promised areas as the model progresses. Therefore, increasing the initial value of parameter q 
beside an active adaptation operator does not reduce the model efficiency in terms of 
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convergence as shown in Figure 5(a). In addition, a range of archive sizes tested and the results 
of 100 independent executions are shown in Figure 5(b). As shown, the changes in results are 
not significant when the archive size is selected around 20 for problem number 3 (Table 3). 
Archive size is a parameter controlling convergence speed, and inclusion of explorer ants 
reduces the sensitivity of convergence rate to the archive size. Without explorer ants, the 
standard deviation of Gaussian functions declines rapidly if algorithm traps in local optimums; 
and then the archive size should be finely tuned to avoid too fast convergence before well 
exploration of the search space. However, introducing the explorer ants to the algorithm 
relaxes the serious parameter tuning procedure for archive size.  
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Figure 5. Performance of RIACOM   on test function number 3 (a) different initial value for 

parameter q, and (b) different archive size. Hatched bars are due to the values in Table 3 
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The results show the efficient performance of the proposed approach for mixed variable 
domains. The efficient performance may partially be due to the fact that the present 
approach benefits from the same concept towards solving both continuous and discrete 
variables. Sampling the continuous search space regardless the variable type may cause the 
model to proceed in both domains with rather equal paces. Moreover, the proposed 
transformation approach further helps the method to favorably handle the discrete decision 
variables. It should be also noted that the original and improved versions of ACOR perform 
truly efficient in continuous domains ([14], [22]). The proposed adaptation of improved 
version of ACOR ([14]) to mixed-variable problems introduces an alternative approach for 
the extensive range of optimization problems in science and engineering. 

 
4.2. Design of a Forced Water Main 

To illustrate the application of the present algorithm in a mixed variable and real world 
engineering problem, the optimal design of an assumed forced water main as a non-convex 
and highly non-linear problem is considered.  

The system consists of n  nodes and 1n  reaches. Each node is free to include a pump 
station with an allowable range of pumping head. The system is assumed to be under steady 
state conditions and the final design will be coherent with this formulation. For simplicity, 
the installation of safety instruments to diminish the impacts of possible dynamic pressures 
is disregarded. The pipe diameters in each section and pumping characteristics at all nodes 
must be determined, while the layout of the system is known. Therefore, the continuous 
decision variables include the pumping heads at pump stations; and the discrete variables 
address the pipes’ diameters at each section. The system design should satisfy the pre-
defined demand and assumed hydraulic constraints considering static flow regime. One may 
mathematically define the model as: 
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(10) 

 
In which, )( nn hpC  and )( ii DC  are  non-linear cost functions for pumps and pipes used at 

node n  and reach i , respectively; nhp  is  pumping head at node n ; iD  and iV  are pipe 

diameter and velocity at reach i , respectively; nh is  piezometric head at node n ; NR is  

number of reaches; NN  is  number of nodes; and maxminmaxmin ,,, DDVV are  minimum and 

maximum allowable velocities and pipe diameters in all reaches, respectively; and 

maxmin,hh are  minimum and maximum allowable piezometric head at all nodes. Detailed 

definition of the cost functions )( nn hpC  and )( ii DC can be found in appendix B. 

For a given water flow  Q  in the system and predefined allowable range for pipe 
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diameters, the velocities will be inevitably between the maximum and minimum values. 
Therefore, a feasible diameter set may be defined such that, for a givenQ , resulting 
velocities fall within the allowable ranges.  

The energy equation between two successive nodes in the system may be defined as: 
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22
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1

1
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hh
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V
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n
nnp

n
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 (11) 

 
Where, h is the piezometric head; hp is the pumping head; hLoss is the total head loss between 
two points including both local and friction losses; and the indexes n  and n+1 refer to the 
beginning and ending nodes of link i . Since the velocities are rather small in the long 
pipelines, the according terms may be insignificant.  

In a long pipe, the energy loss is considerably attributed to friction losses rather than 
local ones. Therefore, the latter might be negligible, and head losses only comprise the 
friction terms. Hazen-Williams equation for friction loss calculation is expressed as: 

 

   NRi
DC

DV
Lh

iH

ii
iif ...,,1

1
)(7.10

87.4
852.1 


  (12) 

Where, hf is the friction loss; L is the pipe length; and CH is the Hazen-Williams coefficient. 
The system under consideration consists of 18 nodes and 17 reaches with known 

topographic levels as depicted in Figure 6. Hence, it leads to an optimization problem 
including 35 decision variables; 17 discrete variables as commercial pipe diameters and 18 
continuous variables as potential pumping head in associated nodes. Lengths of the pipes are 
presented in Table 5. The water flow remains constant in the system as  sm /3.0 3  and the 

Hazen-Williams coefficient is assumed as 120HC . The allowable range for velocity is 
determined as   sm /6.2,4.0 , and according to the system discharge, the pipe diameters ought 
to fall in the range of  m8.0,4.0 .  
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Figure 6. Pipeline topography of the assumed water main 
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Table 5. The lengths of pipe segments 

Link number 1 2 3 4 5 6 7 8 9 

Length (m) 
200

0 
1000 1000 1000 1000 2000 1100 900 1200 

Link number 10 11 12 13 14 15 16 17 

Length (m) 800 2000 500 1500 1000 1000 1000 1000 

 
The allowable ranges for pressure and pumping heads are respectively defined as 

 150,3 and  80,3 meter, respectively. The maximum and minimum permitted values for 

piezometric head at any point are calculated from the corresponding topographic level 
adding to the allowable range for pressure head. It should be considered that the pumping 
head in any node is determined once after the existence of pump station was recognized.  

Before making any decision on the pumping head at each node, presence or absence of a 
pump station at that node of the system must be verified. To do so, one may either use the 
approach described in section 3 with a so-called “zero solution” in the archive or consider a 
binary decision variable with either 1 or 0 values at each node. Values of 1 and zero for this 
binary variable refer to presence and/or absence of pump station at the subject node, 
respectively. If a pump station is assigned to any node, the pumping head is then decided. As 
is obvious, this method inserts an extra array of discrete variables into the model and 
increases the computational effort. In this study the former approach is employed. If an 
agent, at any node, chooses a solution other than the zero solution, the node is nominated for 
a pump station and the generated value shows the pumping head. On the other hand, 
selection and sampling from the PDF associated with the “zero solution” implicitly indicates 
that a pumping station may not be included in that node. 

This approach is able to implicitly handle the presence of pump stations and does not 
impose any pronounced extra computational effort on the model. It can tackle both the 
presence of pump stations and their design heads by using original single array of decision 
variables. 

Once an agent selects a solution (selects the pipes’ diameters and pumping heads), it 
should be checked if the solution is feasible. Since the allowable range of pipes’ diameter is 
chosen as to automatically satisfy the acceptable range of velocity, the only probable 
violation may occur to piezometric heads at nodes. Therefore, velocity constraint in Eq. 10 
remains to be satisfied.  If the constraints on piezometric head (Eq. 10) are not satisfied, the 
responsible agent will be penalized by the following expression:  

 

 NNn
hhifhhPF

hhifhhPF
Penalty

nn

nn
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min
2

min

max
2

max 



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In which, PF  (105 in this study) is the penalty factor addressing importance of   
piezometric head violation. The consequent penalized objective function might be easily 
approached as:  
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Imposing the penalized objective function on the violator ants, the model spontaneously 

inclines towards the feasible areas.  
 

Table 6. Summary of parameters used in present ant model for the forced water main design 

Total ants 20 

Explorer ants 5 

No. of iterations 300 

Archive size(k) 20 

  1.1 

Initial q  0.3 

 
Table 7. Results obtained by present ant colony optimization algorithm 

Run M-LACOR
 Run M-LACOR

 

1 122.71* (1,3)** 11 122.84 (1,3) 

2 123.24 (1,2) 12 124.38 (1,2) 

3 122.72 (1,2) 13 122.72 (1,2) 

4 123.25 (1,2) 14 123.3 (1,3) 

5 122.9 (1,2) 15 122.94 (1,3) 

6 123.15 (1,2) 16 122.90 (1,2) 

7 122.83 (1,2) 17 123.63 (1,3) 

8 123.16 (1,3) 18 122.78 (1,2) 

9 122.96 (1,3) 19 123.82 (1,2) 

10 123.09 (1,2) 20 123.04 (1,2) 

 The best 122.71 

 Mean 123.12 

 The worst 124.38 

 S.D. 0.41 
                                                                         *Annual total cost in thousand dollars 
                                                                         **Nodes including a pump station 

 
The presented mixed-ant optimization algorithm was performed for 20 independent runs. 

For the case under consideration, Table 6 summarizes the values of most effective parameters 
of the algorithm. The objective value of the best solution found in any execution is presented in 
Table 7. The results are obtained by 20 ants within 300 iterations. Upon results, the number of 
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pump stations varied from 2 to 3 in different runs; which provides the variety in designs with 
only little difference in total annual cost. Note that all executions ended up with the final 
feasible solutions, and the best performance attained the value of 122.71 as total annual cost in 
thousand dollars. On the other hand, to test the performance of present algorithm, a powerful 
nonlinear solver, Lingo 9.0, was employed to find the optimal solution to the problem. 
Presence and/or absence of pump station produces a binary problem, therefore, the 
mathematical model lends itself to a Mix Integer Non-Linear Programming  MINLP  problem. 
Lingo 9.0 reported the best local optimal solution with the annual cost of 122.57 thousand 
dollars. Two alternatives for the locations of pump stations and their design heads were 
generated with the same annual cost. First solution locates the pump stations at nodes  1 and 3 
with 68.4 (m) pumping heads at each node; while the alternative solution  sets the pump 
stations at nodes 1 and 4 with pumping heads of 77.92 (m) and 58.92 (m), respectively.  The 
values of pipes’ diameters remain unchanged for both solutions. Hence, the proposed mixed-
ant optimization algorithm is capable to locate near optimal solution in such non-linear and 
complicated case study within rather few numbers of function evaluations.  

 
Table 8. Comparison on system components between the best found solution and reported local 

optimums 

 
Reported local 

optimums 
Best found solution 

Pipe No. Pipe diameter (m) Pipe diameter (m) 
1 0.8 0.8 
2 0.8 0.8 
3 0.8 0.8 
4 0.8 0.75 
5 0.8 0.8 
6 0.8 0.8 
7 0.45 0.45 
8 0.45 0.5 
9 0.45 0.45 

10 0.45 0.45 
11 0.4 0.4 
12 0.45 0.45 
13 0.4 0.4 
14 0.45 0.4 
15 0.45 0.5 
16 0.4 0.4 
17 0.4 0.4 

Pumping head (m) 

Node 1: 68.42 
Node 3: 68.42 

Or 
Node 1: 77.92 
Node 4: 58.92 

Node 1: 70.05 
Node 3: 66.98 
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Table 8 summarizes the pipe diameters and pumping heads of optimum solutions. 
Column No. 2 shows the local optimum solutions found by MINLP formulation, while the 
next column presents the best solution found by M-IACOR. As seen, the local optimum 
solutions reported by Lingo 9.0 recommend different pairs of nodes to install the pumping 
stations. Also, the associated pumping heads are not the same. However, both local 
optimums result the equal annual cost as 122.57 thousand dollars. On the other hand, the 
best solution found by M-IACOR suggests almost the same pipe diameters as those of local 
optimums, and the solution generally follows the local optimums in very similar pattern.  
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Figure 7. Energy grade line for the best found solution by present ant model over 20 executions 
 
Figure 7 shows the energy grade line for the best found solution by the present algorithm 

which locates the pump stations at nodes 1 and 3 with pumping heads of 70.05 and 66.98 
meters, respectively. Jumps in energy grade line are due to pump stations (nodes 1 and 3), 
and as it is clear; the energy grade line is reasonably established above the ground level 
thorough the path.  

The average run-time with a personal computer (2.40 GHz CPU and 2 GB RAM) for the 
water main design problem with 34 decision variables was 12.56 seconds. Reported results 
are obtained after 6000 function evaluations (20 ants within 300 iterations) which are 
expected to rapidly increase as the problem grows in size. Moreover, the CPU time becomes 
larger and larger if the simulation underlying the optimization problem is computationally 
expensive and addresses extremely non-linear and complex equations. However, similar to 
other meta-heuristic optimization methods, long run times or even serious deficiencies in 
finding feasible solutions with limited number of function evaluations may be expected from 
the proposed ACO in too large-scale problems. . It is highly recommended to test the 
efficiency of the proposed ACO method in real-life problems like large water distribution 
networks. Its ability to approach the optimum solution of the large optimization problems 
within reasonable CPU time and reasonable number of function evaluations may be 
evaluated in further studies. 

The efficient performance of the proposed ACO method in mathematical benchmark 
problems and tested water main design problem is encouraging to extend its application to 
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multi-objective optimization problems. Various studies have already evaluated the efficiency 
of different methods in developing the Pareto front of multi-objective problems using the 
meta-heuristic methods like ACO ([29]). The similar approaches may equally be employed 
to study the performance of proposed method in problems with contradictory objectives. 

 
 

5. CONCLUSION 
 

Optimum design of cross-country water mains and associated pumping stations is a 
relatively complex problem due to its mixed continuous- discrete variables decision space.  
Realizing the existence of many mixed-variable problems with continuous (i.e., pumping 
head), discrete (i.e., pipe diameter) as well as binary (i.e., existence or absence of pumping 
station) decision and/or state variables in various fields of engineering and particularly in 
water resources engineering, this article proposed an ACO based algorithm that directly 
tackles the optimization problems with mixed variable domains. The extended version of an 
already existing continuous ACO algorithm was introduced for such mixed-variable 
problems. It was shown that the proposed transformation from continuous to discrete space, 
before fitness evaluation, is a subtle point of the algorithm.  Inclusion of one or more “zero 
solutions” in the archive in the division of continuous variables effectively resolved the 
problem of binary decision variables. The method was practiced on a set of mathematical 
problems and surpassed the results of some other reported algorithms by locating near 
optimum solutions in remarkably small number of function evaluations. Moreover, its 
performance in solving a non-convex and highly non-linear forced water main design 
problem with binary as well as continuous and discrete decision variables was quite 
satisfactory. To more illustrate the performance of the proposed algorithm, further 
application into various mixed domain engineering design problems is suggested for 
prospect studies.  

 
APPENDIX A  

 
Following descriptions are to clarify the parameters of each Gaussian kernel PDF: 

 The values of thi  variable of all current archived solutions form the vector iμ .  

 Standard deviation of thl  PDF, according to thl  solution, at thi construction step, i
l , is  

proportional to the average distance of  i
ls from other solutions, i

es , in the archive. The 

parameter  0   resembles the pheromone evaporation coefficient in discrete ACOs. 

The appropriate values of   minimizes the chance of further exploration of already 
scanned areas.   

 The 
thl  component of the vector ω l  demonstrates the weight of the thl  solution in 

the archive and reflects the superiority of the solution, i.e. kl   ......1 . 

 1 is obtained according to the solution rank  l Fitness values do not directly enter the 
equation, which means the weights of archived solutions are not sensitive to the 
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definition of fitness function. This may be regarded as a strong point of the method.  
 

APPENDIX B 
 

Total cost of the assumed water main includes initial investments and annual operation 
costs.  

The initial investments encompass the costs on:  
purchase and installation of the pumps (Costp)  

 pump station house (Costs)  
 accessory equipments (Costeq)  
 electrical instruments (Costel)  
 purchase and fixing the pipes which is dependent on the pipes’ diameters (Costd)  

The annual operation cost is due to the required electricity for pumping the water (Coste).  
The noted costs, at each node or reach, are expressed as follows: 
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The annual operation cost derived from the required energy for pumping the water may 

be regarded at each pump station as: 

 pue ECCost   (20) 

Where:  

 T
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In which, Cu is the unit cost of electricity;  hrKWEp  is the annual electricity 

consumption;  3/ mNw is the specific weight of water;  smQ /3  is the pumped water 

flow per hour;  mhp is the pumping head;  is the pumping efficiency; and T is the total 

hours of pumping in a year.  
To calculate the total cost of the assumed system, all explained costs at any node or reach 

may be incorporated in a unit expression as:  
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Where, CRF is Capital Recovery Factor and computed as: 
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In which, i  is the inflation rate; and n is the estimated length of operation period.  
Deep attention to above expressions, Eq. 23 may be paraphrased as follow to derive Eq. 10: 
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