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ABSTRACT

In this study, the complex behavior of steel encased reinforced co(8R® composite

beani columns in biaxial bending is predicted by multilayer perceptron neural network. For
this purpose, the previously proposed nonlinear analysis model, mixed-dodamm
formulation, is verified with biaxial bending test results. Therargd set of benchmark
frames is provided and-Ms-My triaxial interaction curve is obtained for them. The
specifications of these frames and their analytical results are defined as inputs and targets of
artificial neural network and a relatively accuraséraation model of the nonlinear behavior

of these bearsolumns is presented. In the end, the results of neural network are compared
to some analytical examples of biaxial bending to determine the accuracy of the model.
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1. INTRODUCTION

SRC steektoncrete composite frames are highly @éint and economic structures that
directed less attention than concrete and steel structures due to the complexities in their
behavior analysis. The features of steel structures include high strength, ductility and fast
implementation. Also concrete sttuces are cost effective and durable and have high
resistance to fire. Composite structures by using steel and concrete in the appropriate
location, utilize the features of both groups. SRC columns include higher resistance to
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reinforced concrete columms the same section, resistance against fire and corrosion of
steel, more unbraced length in tall columns and more resistance against explosion and strike.

Different models are presented for analyzing the behavior of composite dubamns.

Three types ofmodeling are possible for these structures. The first model is a continuous
threedimensional analysis which is very accurate. In this analysis, concrete and steel are
modeled with brick and shell elements and contact surface of two materials are modeled
with gap and frictional elements. Schneifld;, Johansson and GylltdR],Varma et al|[3],

Hu et al.[4] used this model to analyze composite beamumns. Despite high accuracy,
heavy cost of calculations makes this method impractical in analysis of frames. The second
model considers the nonlinear behavior of material only at the end of the meringss' |

and it is called concentrated plasticity model. Hajjar and Go{fle¥el-Tawil and Deierlein

[6], Ina et al.[7] used this model to examine the behavior of composite {xedumns. The

third model is distributed plasticity model which provides nonlinear behavior of materials at
integration points of member elements. This method has higher accuracy compared to
concentrated plasticity. Also it requires less time to analyze than a cortginhoee
dimensionamodel. Hajjar et al[8], Aval et al.[9], Varma et al[3], Tortet al.[10], Denavit

and Hajjar[11], Liang et al.[12] and Denavit et al[13] have used distributed plasticity
model to analyze composite beamiumns. Among these models Denavit and H4jjdi,

Liang et al.[12] have used thredimensional model for biaxial bending analysis of these
beamcolumns.

Many different experiments have been conducted with regard to investigation of behavior
and biaxial bending resistance of composite hemumns. Virdi and Dowling14] tested
ultimate strength of SRC beaoolumns in biaxial bending. In these experiments, 9 concrete
beamcolumn samples with central core in the form of H in biaxial eccentricity and lengths
were examined. In 1984, Morino et §l5] conducted laboratory studies on elaglastic
behavior of SRC composite bearnlumns by applying biaxial eccentricity loading. In these
experiments, eccetitity effects, the angle between the loading point and the main axis and
slenderness ratio on loalisplacement behavior and maximum load capacity were
performed. Munoz and Hd6] applied curvilinear axial force and biaxial bending on four
small scale concrete bearnlumns with ishaped steel core. The sections include one short
column and three slender columns with square sections.

Different types of artificial neural networks halkeen used in various civil engineering
subjects, including estimation of bearoelumns behavior. These networks with nonlinear
behavior and large number of parameters are able to accurately estimate different issues.
Kaveh and Iranmanesfi7-19] performed a comparative study of backpropagation and
improved cainter propagation neural networks in structural analysis and optimization.
Ahmadi et al[20, 21] predicted the capacity of short and long circular composite columns
filled with concrete under axial load. The input data are laboratory results and the effects of
yield stress, tub wall thickness, column length, concrete strength and column dimensions
have been investigated. Kaveh et[dR, 23] predicted the momenbtation characteristic
for saddlelike and semtrigid connections using FEM and BP neural networks. Afaq et al.
[24] examined the effect of steel fibers on load bearing capacity of RC beams using artificial
neural network. The database of neural networks has been extracted from previous results of
experiments and after validati, this network was used for a parametric research on the
effect of various parameters related to steel fibers, material properties, and cross sectional
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geometry By analyzing output estimates, it was determined that this neural network can
quantify the #ects of different parameters for RC load capadftgveh and ServajP5, 26]
usedartificial neural networks for the purpose of analysis and design optimization of double
layer grids. Also Kavie and Raiessi Dehkord27] investigated the application of artificial
neural networks in predicting the deformation of domes under wind kaadar and Yadav
[28] performed beaircolumns buckling analysis using mathematical model and neural
network of multilayer perceptron, and compared the output results of neural network with
Euler's mathematical formula. Rei et al.[29] estimated the vulnerability of the concrete
moment resisting frame structures using artificial neural netwdt¢kssovou et al[30]
predicted the behavior of circumferential RC b&aaclumns connections using neural
network. The neural network predictions folldee mode and load bearing capacity of these
connections confirmed the shortcomings in the regulation which was previously identified
by analytical methodsSadowski et al[31] performa&l and compared nedestructive
detection of adhesiotension of a concrete substrate layer added to concrete layer with
variable thickness using a neural network and with different algorithms.

There are only a few experiments on biaxial bendingpafiposite beaircolumns which
are limited to axial forces and specific angles. Therefore, it is not possible to create a neural
network using laboratory results to predict their behavior. Also due to complexity and time
consuming analytical methods, it istrpossible to easily use them for researchers. For this
reason, in this study after-xerification of composite columns model of Denavit and Hajjar
[32] with the laboratory results of biaxial bending, a large set of square SRC composite
columns with different lengths and dimensions a@daand for each one the three
dimensional PMx-My interaction curve was designed. After that, by using multilayer
perceptron neural network, a fairly accurate estimate for-ghiraensional behavior of these
columns was presented and the neural netwonubwtas compared with analytical results
to determine the accuracy of model.

2.NONLINEAR ANALYSIS

2.1 Constitutive relationshipsrpsented for composite sections

Nonlinear behavior of material in cross section is followed at integral points within the
element. The cycling comprehensive constitutive formulas for steel and concrete presented
in the researches of Denavit and Haj[82] have been used. These models consider
prominent features of each material and the interaction between them.

Constitutiveformulas between concrete and steel are selected in accordance with AISC
36016 [33] and ACI 31814 [34] regulations. Therefore, in this study, the tension in
concrete has been neglected and local buckling has not been considered. The method based
on Changand Mander [35] is used for the cyclic behavior of concrete. Also for uniform
response of concrete strength Popovic equation [36] (equation 1) has been used. A schematic
view of this relationship is presentedRig. 1. The confined model of Mander [374$1been
used to determine the increase of compressive strength and ductility.
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Figurel. Constitutive formula presentdéy Popovicfor uniform response of concrete
In SRC columns, constitutive formula of elagperfectly plastic has been used to model

the steel core. This formula is defined with initial stiffness and yield streRggh2). This
model is suitable to be used in trotled steel sections and armatures.
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Figure2. elastid perfectly plastic constitutive relationship for steel sections of SRC-beam
columns

The members are modeled as fiber sectiwnish present the structural behavior of each
part of section. In SRC sections, concrete is considered to be highly confined between
flanges of steel sectioim this area, confining pressure is provided by steel section and
lateral armatures. ETawil and Deierlein [6] presented a mechanism in which confined
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pressure created by steel section is calculated by equaticni®aalong the y axis, by
considering plastic moment cagiy of theflange, shown irFig. 5a. The distance between
parabolic vertex and central line of steel section is defined with equation 2b. This area
indicates the boundary between highly confined area and medium confined area. This
parabolic area has beenodeled in different directions of the steel section directly with
different equationsHig. 3b). The area between cover and parabolic shape is modeled in
order to provide average behavior through ugegoefficient.
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Figure3. SRC fiber cross section (a) Different area division of SRC column section, (b) A
sample of fiber section of SRC composite column
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2.1 The formulation used in nonlinear analysis

Beam elements are classified based on major unknown variables into three groups including
displacemenbased, forcdbased andhe mixture of these twmethods In the deformation

based method, or in other words stiffness method, elements consider joint deformations as
major unknowns, Hajjar and Gourlgj], Aval & al.[9], Alemdar and Whit¢38].

The deformations of element are calculated using interpolator functions. The equilibrium
of the element is satisfied only in a variational state and internal forces of element do not
accurately satisfy the equilibrium. This typé formulation is normally considered for use
and expansion of simple nonlinear geometric behavior. Interpolator functions, which are
commonly used for deformations, only model linear curvature distribution along the
element. This is a very important liratton, especially when the plastic joints are formed
which causes a highly nonlinear curvature distribution. In fwsed method, or in other
words softness method, the elements consider tensions as the major unknowns, De Souza
[39], El-Tawil and Deierleir{6], Alemdar and Whit¢38].

The forces are calculated along the length of elements using interpolator functions. The
equilibrium of the element is certainly satisfibut compatibility of deformations in element
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will be only satisfied in the variational state. Compared to element with displacéased
method, forcebased elements are often tho@nsuming and have high computational costs.
Elements mixed by elemenbrtes and joint displacements are considered as the major
unknowns which allows the use of interpolator functions for deformation of elements and
stresses along with the length of element, Nukala and \WMoi{e Alemdar and Whit¢38],

Tort and Hajjaf10], Denavit and Hajjaf11].

Despite complexityf analysis process, which is usually longer than the methods based
on displacement and force, the mixed method is a proper balance between estimation of
nonlinear curves along the element and the ability to consider direct nonlinear geometric
behavior.

In this study, mixed beam element, implemented in the framework of OpenSees software
by Denavit and Hajjafll, 32] has been used for the nonlinear analysis of composite
columns.

2.2 Interaction curve

By a set of complete nonlinear analysis, interaction curves of biaxial bending mbment
axial forces for each section and each frame was created. An analysis was performed only
with axial force to determine the critical axial load, then a set of analgssarried out to

apply constant axial load and incremental lateral load. In the case of zero axial load, section
analysis was performed instead of frame analysis. In each analysis, the critical point is
determined when the minimum eigenvalue is zero.ases where this does not occur, the
critical point is created when the maximum longitudinal strain in each section of each
member reaches 0.05. At critical point, the amount of applied loads and internal forces is
recorded, and it is possible to constriice interaction curve of firstrder loads and
interaction of secondrder internal forces. A sample of these diagrams is shown for SRC
sections and a frame kig. 4.
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Figure4. P-My-My triaxial interaction curve for SR8BB-4 composite beargolumn
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3. COMPARING THE MODEL WITH BIAXIAL LABORAT ORY RESULTS

The nonlinear model described in the previous section is compared and verified in Denavit
and Hajjar[32] research with the existing laboratory results. In this section, the results of
nonlinear analysis of SRC columns with biaxial bending tests are verified by Morino et al.
[15] and Virdi and Dowlind14]. That is, PMx-My interaction diagram for the sections used

in the tests is obtained by using nonlinear analgg@sause in tests the biaxial bending
behavior is examined only in one axiahd, threedimensional interaction curve was cut at

this axial load and MsMy two-dimensional curve was obtained. In this case, the recorded
moments in the lab was compared with analysis results. In table 3 the ratio of test results to
analysis results igresentedFig. 4 is an example of this comparison.

Table 1 shows the specifications of concrete sections in tested SRC columns. These
specifications include concrete strength, yield strength of the longitudinal and transverse
armatures, columns dimensgrdiameter of bars, the reinforcement spacing and concrete
cover. Table 2 shows the specifications of steel sections used in SRC columns including
steel yield strength, web and flange dimensions and their thickness. In table 3 the ratio of
analysis resudt to test results is presented for these columns. The average ratio of analysis
moment to test moment for these 13 samples is 1.0 and standard deviation is 0.08. The
results clearly show the strong perforroarof nonlinear analysis. Fgba and 5b show &

Mx-My two-dimensional interaction diagram for samples-@3 and H in axial loads of
524.89 KN (118 kip) and 355.86 KN (80 kip). It should be noted that the naming of samples
is based on a reference article.

Tablel: The specificdons of concrete section dimensions and materials of SRC composite

columns

Spec. H(mm) B(mm) f¢(MPa) do(mm) Fylr(MPa) dbrie{mm) s(mm) Fu(MPa) cover(mm)
A4-60 160.02 160.02 21.10 6.35 413.70 4.06 150.11 413.70 19.05
A8-45 160.02 160.02 33.58 6.35 413.70 4.06 150.11 413.70 19.05
B4-45 160.02 160.02 23.37 6.35 413.70 4.06 150.11 413.70 19.05
B4-60 160.02 160.02 23.37 6.35 413.70 4.06 150.11 413.70 19.05
B8-45 160.02 160.02 33.30 6.35 413.70 4.06 150.11 413.70 19.05
B8-60 160.02 160.02 33.30 6.35 413.70 4.06 150.11 413.70 19.05
C845 160.02 160.02 24.62 6.35 413.70 4.06 150.11 413.70 19.05
C860 160.02 160.02 24.62 6.35 413.70 4.06 150.11 413.70 19.05
D4-45 160.02 160.02 21.24 6.35 413.70 4.06 150.11 413.70 19.05
D8-45 160.02 160.02 22.89 6.35 413.70 4.06 150.11 413.70 19.05
D860 160.02 160.02 22.89 6.35 413.70 4.06 150.11 413.70 19.05

H 254.00 254.00 39.72 12.70 308.69 4.83 152.40 308.69 25.40

| 254.00 254.00 43.16 12.70 308.69 4.83 152.40 308.69 25.40
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Table2: The specifications of steel section dimensions of SRC composite columns

Spec. d(mm) tw(mm) bi(mm)  t:(mm) F, (MPa)

A4-60 100.08 6.10 100.08 7.87 344.75

A8-45 100.08 6.10 100.08 7.87 344.75

B4-45 100.08 6.10 100.08 7.87 344.75

B4-60 100.08 6.10 100.08 7.87 344.75

B8-45 100.08 6.10 100.08 7.87 344.75

B8-60 100.08 6.10 100.08 7.87 344.75

C845 100.08 6.10 100.08 7.87 344.75

C8-60 100.08 6.10 100.08 7.87 344.75

D4-45 100.08 6.10 100.08 7.87 344.75

D8-45 100.08 6.10 100.08 7.87 344.75

D8-60 100.08 6.10 100.08 7.87 344.75

H 152.40 6.35 152.40 6.35 314.69

I 152.40 6.35 152.40 6.35 314.69

Table3: The ratio of test results to nonlinear analysis results for SRC columns
Spec. H(mm) B(mm) L(mm) Angle (Ee,if) (K'\"N‘fﬁ’q) Mana(KN.m)  Manaf/Mesp Ref.

A4-60  160.02 160.02 960.12 60.00 524.02 24.15 24.42 1.01 Morino 1984
A8-45  160.02 160.02 960.12 45.00 378.61 31.63 30.07 0.95 Morino 1984
B4-45  160.02 160.02 2400.30 45.00 389.60 23.43 23.69 1.01 Morino 1984
B4-60  160.02 160.02 2400.30 60.00 436.39 26.99 24.38 0.90 Morino 1984
B8-45  160.02 160.02 2400.30 45.00 294.19 31.27 29.22 0.93 Morino 1984
B8-60  160.02 160.02 2400.30 60.00 328.31 33.28 31.24 0.94 Morino 1984
C845  160.02 160.02 3600.45 4500 19527 25.88 24.37 0.94 Morino 1984
C860  160.02 160.02 3600.45 60.00 194.02 23.04 26.61 1.15 Morino 1984
D445  160.02 160.02 4800.60 4500 209.01 19.10 18.12 0.95 Morino 1984
D845  160.02 160.02 4800.60 4500 146.61 21.69 22.67 1.04 Morino 1984
D860  160.02 160.02 4800.60 60.00 158.35 21.29 24.25 1.14 Morino 1984
H 254.00 254.00 7432.29 30.11 353.66 84.20 86.90 1.03 Virdi 1973
| 254.00 254.00 743229 30.11 293.88 96.38 89.74 0.93 Virdi 1973

Mean 1.00

Standard Deviation 0.08

Coheficient of Variation 0.08

Minor Axis Moment (KN-m)

—— Inelastic Analysis
® Experimental Results
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Figure5. My-My two-dimensional interaction curve: (a) &0 specimen, (b) H specimen
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4. BENCHMARK FRAMES

In researches of Kanchanaldil], SurovekMaleck and Whitd42, 43} benchmark frames

with supporting conditions and various lateral bracings were used to analyze the stability of
steel columns. Denavit et 4lL3] expanded these frames and used with a set of composite
sections of CFT and SRC to analyze the stability of composite columns. One of the main
features of these base frames is the complete covefagessible modes for composite
beami columns in terms of supporting conditions, lateral bracings, column bearing loads,
material strength and the size of sections. In this study, these SRC composite sections and
frames have been used to obtain a corepsst of interaction curves of biaxial bending
momenti axial force related to composite columnglifferent situations.

4.1 Sections

SRC composite section are selected to incorporate practical range of concrete strength and
steel ratio. Other specifidahs of sections such as steel yield stress are considered to be
common values. Steel yield stress for rectangular sections of wide flange W is considered to
be Fy = 344.74MPa (50 ksi). For concrete with a typical strength fc = 27.6MPa (4 ksi) and
for high strength concrete it is f'c = 68.9MPa (10 ksi).

In composite section there is no upper limit for steel ratio. But practical and dimensional
considerations in which the steel sections are made will impose the upper limit of about 12%
for SRC. Also AISC 36-16 regulation considers at least 1% steel for composite sections.
Also this design codespecified minimum of 0.4% for reinforcement and there is no
specification for maximum value. ACI regulation specified maximum of 8% for
reinforcement.

Given these lintations, three wide flange section of W for SRC section, three
reinforcement configuration and three external dimensions of 560 mm in 560 mm (22 in 22
inches), 710 mm in 710 mm (28 in 28 inches), and 865 mm in 865 mm (34 in 34 inches)
have been used. Atad of 36 sections (18 sections and two concrete strengths) were selected
for SRCs. Table 4 and 5 show the type and ratio of used steel and the configuration of SRC
sections reinforcement.

Table4: Selected steel sections

Index Steel Shape Is
A W3605463 11.66%
B W360R347 8.74%
C W360R179 4.49%

SRC steel shapes

Table5: Reinforcement configuration

Index Steel Shape Is
A 20#36 3.98%
B 12#32 1.94%

SRC reinforcing configuration
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The agreement for naming the sections is three pdrish are separated by a dash.
These parts include SRC section type, section shape and concrete strength. For example, the
SRGACB-4 considers SR@nhich is made of a section with external dimensiob@&f mm
in 560 mm a steel section M36x179, 12 #32reinforcement and a concrete with strength
of f'c = 27.6 MPa. These sections are shown schematicdtgis.

@ O O C O Qg
P ———— 9 P ’ : g
| c I
o d
P S " e
QO O O 0O O
SRC-CCA-# SRC-BCB-# SRC-ACB-#

Figure 6. The schematic design of sections in different dimensions

4.2 Frames

Denavit et al.[13] expanded the benchmark frames used in the previous researches and
utilized them to analyze the stability of compescolumns. In this research the three
dimensional model of these frames was used to analyze the behavior of SRC composite
columns in biaxial bending. This set include sideswénbited frames and various end
conditions. Frames have been expanded andpgheameters for thredimensional behavior

of composite sections have been developed. This frame is shown schemati€igily in

P
pM

Sidesway
Inhibited Frame

N

\G7

(a) Composite Beam-Column  (b) Initial geometric imperfection

Figure 7. Schematic view of benchmark frame
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Sideswayy nhi bited frames are def i migahdtweiendh sl end
moments ratio of. With aveg, length of each frame (L) is calculated using equagiolm

this equationElgw) is gross elastic rigidity of weak axis amog is nominal zerdength
compressive strength. The value of these parameters for selected framed is presented in
Table 6.

Table6: The variables of base frames
Frame Slenderness End moment ratio Number of frames
Sidesway 4valuesso e 1 ¢ _
inhibited ~ =0.45,0.00.1.35,1.90 4Values =0, 1 16

4.3 Initial geometridmperfection

Numerical geometric imperfections equal to the manufacturing and installation tolerances in
AISC 360316 were explicitly modeled. For all framest-of-straightness was considered the
half sine wave with a maximum range of L/10@&g( 7b).

5. DATA ACQUISITION TO BE USED IN ARTIFICIA L NEURAL
NETWORK

In this section the obtained results in the inelastic analysis part of benchmark frames are
classified to be used in artificial neural networks. In this study, the results of sidesway
inhibited frame analysis have been used for training the neural network. The number of
samples is 576 frames.

In order to define each frame, 10 variables includinigngth of the elemenB cross
section width br steel section width; flange thickness of steel sectidp,web thickness of
steel sectiond depth of steel sectiodp diameter of armatureslo. number of armature$,.0
concrete strength an@ bending coefficient were used. Since steel yield strength is
considered the same for all framiegwas removed from the inputs. The input data of neural
network for frames with lateral bracing is presented in Table 7.

The target output of neural network ard/R-My interaction curves for each frame which
are not symmetric due to steel shape used. So, with the angles of 0, 22.5, 45, 67.5 and 90
degrees, we can design interaction curve. In each angle, there are 7 values of moments for
each component of x and y. bgding the sum of square roots of léind M, for each group,
a value of M is obtained. Therefore, there will be a total of 35 moments for five angles. Also
to reflect the value of axial force, the maximum Pmax is sufficient. Because this value is
divided into equal intervals from Pmax to zero. Accordingly, the interaction curve in each
frame can be described.

According to what we already said, the modeled neural network for composite columns
has 10 inputs and 36 outputs and 576 samples.
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Table7: Input data of neural network for frames with lateral bracing

Number  Length
B(mm) ’ d(mm) tw(mm) bi(mm) t(mm) F¢(MPa) db(mm) rebar No.
of Frames  (mm)

1 5967.48 558.80 -0.5 434.34 35.81 411.48 57.40 27.58 35.81 20
2 724052 711.20 -0.5 43434 3581 41148 57.40 27.58 35.81 20
3 8820.15 863.60 -0.5 434.34 3581 41148 57.40 27.58 35.81 20
4 5621.78 558.80 -0.5 434.34 35.81 411.48 57.40 68.95 35.81 20
5 6750.56 711.20 -0.5 434.34 3581 41148 57.40 68.95 35.81 20
6 8090.66 863.60 -0.5 43434 3581 41148 57.40 68.95 35.81 20
7 6107.43 558.80 -0.5 43434 3581 41148 57.40 27.58 32.26 12
8 7288.28 711.20 -0.5 43434 3581 41148 57.40 27.58 32.26 12
9 8807.20 863.60 -0.5 43434 3581 41148 57.40 27.58 32.26 12
10 5687.06 558.80 -0.5 434.34 3581 41148 57.40 68.95 32.26 12
11 6741.67 711.20 -0.5 43434 3581 41148 57.40 68.95 32.26 12
12 8037.58 863.60 -0.5 43434 3581 41148 57.40 68.95 32.26 12
13 5896.10 558.80 -0.5 406.40 27.18 403.86 43.69 27.58 35.81 20
14 7342.12 711.20 -0.5 406.40 27.18 403.86 43.69 27.58 35.81 20
15 9046.97 863.60 -0.5 406.40 27.18 403.86 43.69 27.58 35.81 20
16 5516.12 558.80 -0.5 406.40 27.18 403.86 43.69 68.95 35.81 20
17 6762.75 711.20 -0.5 406.40 27.18 403.86 43.69 68.95 35.81 20
18 8168.89 863.60 -0.5 406.40 27.18 403.86 43.69 68.95 35.81 20
19 6051.80 558.80 -0.5 406.40 27.18 403.86 43.69 27.58 32.26 12
20 7408.93 711.20 -0.5 406.40 27.18 403.86 43.69 27.58 32.26 12

573 40227.25 863.60 1 332.74 18.03 31242 28.19 27.58 32.26 12
574 22655.53 558.80 1 332.74 18.03 31242 28.19 68.95 32.26 12
575 28604.72 711.20 1 332.74 18.03 31242 28.19 68.95 32.26 12
576 34830.26 863.60 1 332.74 18.03 31242 28.19 68.95 32.26 12

5.1 Evaluation of neural network performance

In this section, the performance of the multilayer perceptron neural network is investigated
by various algorithms and it will be compared with analytical results. Regarding the
algorithms used in previous reselaes and investigation of various algorithms in terms of
suitability for this study, multilayer neural networks was performed with Levenberg
Marquardt (LM) and Bayesian Regularization (BR) algorithms in MATLAB softwairst,

the number of neurons aogtimal network structure were investigated.
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5.2 Selecting the number of hidden layer neurons

Selection of neurons has a very important impact on neural network performance. In the
case of uncontrolled increase of neurons, overfitting occurs. That isnadeled neural
network offers accurate results with specific samples but by using this model in samples
other than the samples used in network, we face very inaccurate results. Various methods
have been proposed in order to determine the number of netargnrevent overfitting.
Some of these methods only depend on the number of inputs, and some depend on the
number of inputs and outputs at the same time.

According to Kolmogorov theory the number of hidden layer neurons K must be equal to
square root of mitiplication of inputs and outputs.

O Ma 3

By using this formula, the number of neurons will be 19. Normally, the number of
neurons is between the number of inputs and the number of outputs, and also their number is
never twice more than the numbef inputs. The following experimental formula is
presented to find the right value.

b b 07 (4)

By using this formula, the number of neurons must be 13. Also based on researches of
Hush and Horne (1993) the maximum number of hidden layer neomastsbe based on the
following formula:

0 cb p )

Therefore, the number of neurons must not exceed 21.

In this study, the number of training data is 403 (70% randomly selected fronfio576)
braced frames. Based on the previous values and examimdtiifferent values for the
number of neurons, the number 14 hadiést results.

5.3 The output results of neural network

In this section the performance of modeled neural network for the frames is investigated
using LM and BR algorithmg:ig. 8 shows the performance of trained neural network using
LM algorithm for the sideswainhibited frames. This figure has 4 diagrams including the
performance of training parts, validation, testing, and total data. The linear correlation
coefficient for thee parts is in the range of 0.996 and 0.998. This correlation represents a
very good performance of this model for determining the behavior of composite columns.

Fig. 9 presents the performance of artificial neural network with BR algorithm for
sideswayinhibited frames. Range of variation in correlation factor R is 0.997 for test and
validation data and 0.998 for train data which illustrate better performance of this algorithm
rather than LM algorithm.
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Figure 9. The results of neural network and BR algorithm on composite frames with lateral
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Figure 10. The histogram of relative error percentage for neural network model for frames with
lateralbracing

Fig. 10 shows histogram of relative error percentage for neural network model for frames
with lateral bracing. The relative error of all samples is less than 0.007%. Also error of most
of samples is less than 0.001%.

5.4 Comparison of the result$ analytical frames with neural network outputs

After training the neural network model for-NP-My SRC interaction curve of SRC
composite columns, in order to examine the accuracy, this model was compared with the
results obtained from inelastic analysif few frames, in the range of the neural network
variables. For this purpose, SRC columns with external dimensions of 610 mm in 610 mm
(24 in 24 inches) and 762 mm in 762 mm (30 in 30 inches) and steel sectioB3§@%3V4

and WB10x202were consideredlhe specifications of sections and materials used in these
samples were then given to neural network as input and estimatedditmergsional
interaction curve was obtained. Also the interaction curve of each of these samples was also
created by nonlineanalysis. For better comparison of two interaction curves, in axial load
of 0.6Pmax two curves were cut and thei-Mly, curves were compared in this axial load.

Fig. 11 and 12 illustrates the results of sample Spec8 with neural network model of LM and
BR dgorithm in axial loads of 0.2Rx 0.4Phax 0.6Pnax and 0.8Rax respectively. The ratio

of obtained bending moment from neural network with the BR algorithm to bending
moment of nonlinear analysis at-dBgree angle is shown in Table 8. These resultsaneli

the high accuracy of neural network with BR algorithm in predicting the behavior of these
columns.
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Figure6. Comparing the results of sample Spec8 with neural network model of LM algorithm in
axial loads of 0.2R:xt0 0.8Rha

Table8: The ratio of estimated moments of neural network to nonlinear analysis moment

Spec. d(mm) tw(mm) bi(m) t(mm) H(mm) f(MPa) do(mm) config L(mm) Pexp Maxn/Minetastc
(KN) at 45°
Specl 340.36 20.07 314.96 31.75 609.60 27.58 35.81 20 4064 15286 1.01
Spec2 398.78 24.89 401.32 39.62 762.00 27.58 35.81 20 4064 21632.18 0.94
Spec3 398.78 24.89 401.32 39.62 609.60 27.58 35.81 20 4064 18040.78 0.97
Spec4 340.36 20.07 314.96 31.75 762.00 27.58 35.81 20 4064 19013.38 1
Spec5 340.36 20.07 314.96 31.75 609.60 27.58 35.81 20 8128 12273.81 1.03
Spec6 398.78 24.89 401.32 39.62 762.00 27.58 35.81 20 8128 19150.33 0.98
Spec7 398.78 24.89 401.32 39.62 609.60 27.58 35.81 20 8128 14394.26 0.98
Spec8 340.36 20.07 314.96 31.75 762.00 27.58 35.81 20 8128 16976.95 1.01
Mean 0.99
Standard Deviation (SD) 0.03
Coefficient of Variation 003

(Cov)
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Figure 12. Comparing the results of sample Spec8 with neural network model of BR algorithm
in axial loads of 0.2Rxt0 0.8Rhax

6. CONCLUSION

In this study, a nonlinear analysis of composite bealamns was carried out by using
mixed bearrcolumn formulation and fiber elements to makéMRMy threedimensional
interaction curves. Then, by using benchmark framesige lset of SRC composite beam
columns with different properties was selected and their -threensional interaction
curves were obtained. By using this data, artificial neural network was trained to estimate
the complex behavior of these bdamolumns. Twadifferent algorithms for modeling of the
neural network were used and the accuracy of each of them was analyzed using the
analytical results in the range of neural network variables. These results indicate that the
generated models can present a propgmasion of the nonlinear behavior of composite
beamcolumns.
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