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ABSTRACT 
 

This paper presents an efficient meta-heuristic algorithm for optimization of double-layer 

scallop domes subjected to earthquake loading. The optimization is performed by a 

combination of harmony search (HS) and firefly algorithm (FA). This new algorithm is 

called harmony search firefly algorithm (HSFA). The optimization task is achieved by 

taking into account geometrical and material nonlinearities. Operation of HSFA includes 

three phases. In the first phase, a preliminary optimization is accomplished using HS. In the 

second phase, an optimal initial population is produced using the first phase results. In the 

last phase, FA is employed to find optimum design using the produced optimal initial 

population. The optimum design obtained by HSFA is compared with those of HS and FA. 

It is demonstrated that the HSFA converges to better solution compared to the other 

algorithms. 
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1. INTRODUCTION 
 

Optimum design of structures is usually achieved by selecting the design variables such that 

an objective function is minimized while all of the design constraints are satisfied. Structural 

optimization requires the structural analysis to be performed many times for the specified 

external loads. This makes the optimal design process inefficient, especially when a time 

history analysis is considered. This difficulty will be compounded when the optimization 
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method possesses a stochastic nature such as meta-heuristics [1].  

This paper deals with optimum design of double layer scallop domes subject to 

earthquake loading considering structural nonlinear behaviour. In the recent years, much 

progress has been made in optimum design of space structures by considering linear 

behavior [2-4]. It is observed that some structures appear nonlinear behavior even in usual 

range of loading [5-6]. Therefore, neglecting of nonlinear effects in design optimization of 

these structures may be led to uneconomic designs. It is demonstrated in [6] that considering 

nonlinear behaviour in optimization process of scallop domes subject to static loading 

results in more efficient structures compared with the optimization process considering 

linear behaviour. 

The main aim of the present study is to design double-layer scallop domes [7] subject to 

earthquake loading [8] for optimal weight considering nonlinear behavior. In the case of 

nonlinear optimization geometrical and material nonlinearities are taken into account. All of 

the structural optimization problems have two main phases: analysis and optimization. In the 

analysis phase, OPENSEES [9] is employed and in the optimization phase, a combination of 

harmony search (HS) [10] and firefly algorithm (FA) [11] is utilized. This combined 

algorithm is termed as harmony search firefly algorithm (HSFA). In order to implement 

HSFA, at first, a preliminary optimization is accomplished using HS. Then, an optimal 

initial population is produced using the preliminary optimization results. Finally, FA is 

employed to find optimum design using the optimal initial population. All of the required 

programs in the optimization phase are coded in MATLAB [12]. In this paper, the design 

variables are cross sectional areas of the structural elements. In order to illustrate the 

efficiency of the proposed methodology two numerical examples including optimization of a 

1200-bar, 8-segment and a 1500-bar, 10-segment double layer scallop domes subject to 

earthquake loading are presented. As the main contribution of the present paper is to propose 

an efficient meta-heuristic algorithm for optimization of scallop domes, full practical 

considerations such as earthquake records scaling and simultaneous application of horizontal 

and vertical records are not included in the numerical examples. 

 

 

2. SCALLOP DOMES 
 

One of the most challenging tasks in the field of structural engineering is to cover large 

spans, such as exhibition halls, stadium and concert halls, without intermediate columns. 

Space structures, especially domes, offer economical solutions to this problem. The latticed 

domes are given special names depending on the form in which steel elements are connected 

to each other. Scallop dome is a specific type of space dome structures and was introduced 

by Nooshin et al [7]. Scallop domes are a particularly magnificent family of domes that 

could be constructed as latticed dome or continuous shell domes. Configuration of scallop 

domes depends on a various number of variable features such as the frequency of undulating 

segments as well as the shape of the segment. In general, a scallop dome may have any 

number of arched segments. If the number of arched segments is n, then the dome is referred 

to as ‘n-segment scallop dome’. The maximum rise for a circumferential ring which occurs 

at the middle of each segment is referred to as ‘amplitude of the ring’. The furthest ring from 

the crown, namely, the ‘base ring’ has the largest amplitude. This one is referred as 
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‘amplitude of dome’ [7]. The amount of amplitude considering the architectural or structural 

requirements could be different. In Fig 1 a 5-segment scallop dome with the ratio of the 

amplitude to the span of 0.2 is shown. 

 

 
Figure 1. A 5-segment scallop dome with the ratio of the amplitude to the span of 0.2 

 

The style of the variation of the height along with the circumferential ring can be 

accomplished in different ways. These height variations can be parabolic or sinusoidal. More 

details about scallop domes may be found in [6].  

The present paper tackles the sizing optimization problem of double layer scallop domes 

subject to time history earthquake loading. Formulation of the optimization problem is 

presented in the next section. 

 

 

3. FORMULATION OF OPTIMIZATION PROBLEM 
 

In sizing optimization problems the aim is usually to minimize the weight of the structure, 

under some behavioral constraints. Due to the practical demands the cross-sections are 

selected from the sections available in the manufacture catalogues. Optimal design of 

structures subjected to time history earthquake loading is the solution procedure to find the 

design variables in the following optimization formulation: 

 

Minimize: f(X) (1) 

Subject to: 0)t ),t( ),t( ),t( ,X(g j ZZZ  ;  m,,1j   (2) 

0)t(u)t()t()t( g   MIKZZCZM  (3) 
d

i RX  ;  n,,1i   (4) 

 

where f, g, I, X, )t(Z , )t(Z , )t(Z , M, C, K, )t(ug ,m, n, and t are objective function, behavioural 

constraint, unit vector, design variables vector, acceleration vector, velocity vector, 

displacement vector, mass matrix, damping matrix, stiffness matrix, ground acceleration, the 

number of constraints, the number of design variables, and time, respectively. Rd is a given 

set of discrete values. 

As all the constraints are time-dependent the consideration of all the constraints requires 
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an enormous amount of computational effort [13-14]. In [15] some methods for dynamic 

constraint treatment have been proposed. In the present paper, limitation on the maximum 

deflection and the overall stability of the structure during the earthquake are considered as 

the design constraints. 

In this study, penalty function method (PFM) is employed to handle the constraints of the 

structural optimization problem. PFM transforms the basic constrained optimization 

problem into alternative unconstrained one. The above constrained optimization problem 

can be converted into an unconstrained problem by constructing a function of the following 

form: 
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where )X(fp
, Δ~ , and rp are the penalty function, the feasible search space, and an adjusting 

factor, respectively.  

In order to perform dynamic analysis considering nonlinear behaviour, OPENSEES is 

employed. 

 

 

4. NONLINEAR BEHAVIOR OF SCALLOP DOMES 
 

Nonlinear structural behavior arises from a number of causes, which can be grouped into 

geometrical and material nonlinearity. If a structure experiences large deformations, its 

changing geometric configuration can cause the structure to respond nonlinearly. Nonlinear 

stress-strain relationships are a common cause of material nonlinear behavior. One of the 

main factors that can influence a material’s stress-strain properties is load history in elasto-

plastic response. In this study, a finite elements model based on geometrical and material 

nonlinear analysis of scallop domes including plasticity, and large deflection capabilities is 

presented by OPENSEES. In this model a 3-D uniaxial co-rotational truss element is used. 

In elasto-plastic analysis the von mises yield function is used as yield criterion. Flow rule in 

this model is associative and the hardening rule is Bi-linear kinematics hardening in tension. 

In compression, according to FEMA274 [16], it is assumed that the element buckles at its 

corresponding buckling stress state and its residual stress is about 20% of the buckling 

stress. In this case, the stress-strain relation is shown in Fig 2. In this figure, σb, σy and σu are 

buckling, yield and ultimate stresses, respectively and εb, εy and εu are their corresponding 

strains. Fig 2 implies that for compression if σb < σy the buckling path and if   σb > σy the 

yield path will be traced by the structural elements.     
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Figure 2. Stress-strain behaviour 

 

The accurate and computationally efficient hysteretic model for space structure members 

is necessary for simulation of realistic dynamic behaviour of such structures. Hysteretic 

models that are capable of accurately simulating the behaviour will need to capture the 

unique nature of the tension and compression backbones, strength degradation, stiffness 

degradation, and pinching hysteretic shape. In the present study the Pinching4 uniaxial 

material model of OPENSEES based on the stress-strain behaviour of Fig 2 is employed to 

simulate the hysteretic behaviour of structural elements. The Pinching4 uniaxial material 

model, developed by Lowes et al. [17], is essentially equivalent to the hysteretic model 

proposed by Ibarra et al. [18]. In order to determine the parameters related to the Pinching4 

material model an experimental hysteretic response of a 4 in. diameter and 0.357 in. wall 

thickness steel pipe with 80r/l  reported by Black et al. [19] is selected. This experimental 

hysteretic response is shown in Fig 3. As this experimental hysteretic response was also 

employed in [20] for calibrating the computational models more details about it can be 

found in [20]. 

 

 
Figure 3. Experimental hysteretic response of 4 in. diameter pipe [18] 

 

Pinching4-based simulated hysteretic response of axial behaviour for the 4 in. diameter 

pipe with 80/ rl  of this study is shown in Fig 4. 
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Figure 4. Pinching4-based simulated hysteretic response of 4 in. diameter pipe 

 

The comparison of experimental and Pinching4-based simulated hysteretic responses 

shown in Fig 5 indicates that that the calibrated pinching model can capture the cyclic 

hysteretic behaviour of the element including strength degradation. 

 

 
Figure 5. Comparison of experimental and Pinching4-based simulated hysteretic responses 

 

The existing difference between experimental and simulated hysteretic responses in the 

last cycles is due to this fact that the employed hysteretic model in this study is a simple 

model based on application of truss elements with low computational demand. As the main 

aim of this study is optimization of the large-scale scallop domes subject to time history 

earthquake loading it is obvious that application of simple and computationally efficient 

models is of high importance for achieving optimization task. Therefore this model is 

employed in the present study. 

In this model, the buckling stress of structural elements is computed based on the AISC-

LRFD code [21] as follows:  
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where λc is slenderness parameter; E is modulus of elasticity; and K is effective length factor 

which for space structure elements is chosen to be 1. 
 

 

5. META-HEURISTIC ALGORITHMS 
 

In structural optimization problems, the computational effort spent in gradient calculations 

required by the mathematical programming algorithms is usually large. In recent years, it 

was found that meta-heuristic algorithms are computationally efficient even if greater 

number of optimization cycles is needed to reach the optimum. Furthermore, meta-heuristic 

algorithms are more robust in finding the global optima, due to their random search, whereas 

mathematical programming algorithms may be trapped into local optima. In this work, HS 

and FA meta-heuristic algorithms are combined to propose an efficient algorithm for 

tackling the problem of optimization of scallop domes subject to earthquake loading. Before 

describing the combined algorithm, main concepts of HS and FA are explained as follows. 

 

5.1 Harmony Search 

The HS is based on the musical performance process that achieves when a musician searches 

for a better state of harmony. Jazz improvisation seeks musically pleasing harmony similar 

to the optimum design process which seeks optimum solutions. The pitch of each musical 

instrument determines the aesthetic quality, just as the objective function value is 

determined by the set of values assigned to each design variable. In the process of musical 

production a musician selects and brings together number of different notes from the whole 

notes and then plays these with a musical instrument to find out whether it gives a pleasing 

harmony. The musician then tunes some of these notes to achieve a better harmony. 

Similarly it is then checked whether this candidate solution improves the objective function 

or not. This candidate solution is then checked to find out whether it satisfies the objective 

function or not, similar to the process of finding out whether euphonic music is obtained or 

not. The HS consists of five basic steps which can be summarized as follows [22]: 

A possible range for each design variable is specified. The number of solution vectors in 

harmony memory (HM) or size of HM (HMS), the harmony considering rate (HMCR), the 

pitch adjusting rate (PAR) and the maximum number of searches are also specified. 

An initial harmony memory matrix (HM) is produce. The HM is a matrix in which each 

row contains the values of design variables which are randomly selected from the design 

space. If the optimization problem includes n design variables the HM has the following 

form:  
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where 
j

ix  is the value of the ith design variable in the jth solution vector.  

To improvise new HM, a new harmony vector is generated. Thus the new value of the ith 

design variable can be chosen from the possible range of ith column of the HM with the 

probability of HMCR or from the entire possible range of values with the probability of 1-

HMCR as follows: 
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where iΔ is the set of the potential range of values for ith design variable. The HMCR is the 

probability of choosing one value from the significant values stored in the HM, and (1-

HMCR) is the probability of randomly choosing one practical value not limited to those 

stored in the HM. 

Components of the new harmony vector, is examined to determine whether it should be 

pitch-adjusted. Pitch adjusting is performed only after a value has been chosen from the HM 

as follows: 
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If the pitch-adjustment decision for new
i

x  is "Yes", then a neighboring value with the 

probability of PAR%×HMCR is taken for it as follows: 
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where u(-1,+1) is a uniform distribution between -1 and +1; also bw is an arbitrary distance 

bandwidth for the continuous design variables. 

This operation increases the chance of reaching the global optimum.  

After selecting the new values for each design variables the objective function value is 

calculated for the new harmony vector. In this case new
i

x is analyzed using FEM and its 

objective function value is determined. If new
i

x is better than the worst vector in the HM, the 

new harmony is substituted by the existing worst harmony. The HM is then sorted in 
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descending order by the objective function value. 

The optimization process of HS is repeated by continuing improvising new harmonies 

until a termination criterion is satisfied. 

 

5.2 Firefly Algorithm 

The FA is a new meta-heuristic optimization algorithm inspired by the flashing behavior of 

fireflies. FA is a population-based meta-heuristic optimization algorithm. Fireflies 

communicate, search for pray and find mates using bioluminescence with varied flashing 

patterns [23]. In order to develop the firefly algorithm, natural flashing characteristics of 

fireflies have been idealized using the following three rules: 

All of the fireflies are unisex; therefore, one firefly will be attracted to other fireflies 

regardless of their sex. 

Attractiveness of each firefly is proportional to its brightness, thus for any two flashing 

fireflies, the less bright firefly will move towards the brighter one. The attractiveness is 

proportional to the brightness and they both decrease as their distance increases. If there is 

no brighter one than a particular firefly, it will move randomly. 

The brightness of a firefly is determined according to the nature of the objective function. 

The attractiveness of a firefly is determined by its brightness or light intensity which is 

obtained from the objective function of the optimization problem. However, the 

attractiveness β, which is related to the judgment of the beholder, varies with the distance 

between two fireflies. The attractiveness β can be defined by [23]: 

 
2r-

0e
.   (13) 

 

where r is distance of two fireflies, β0 is the attractiveness at r=0, and the light 

absorption coefficient.  

The distance between two fireflies i and j at Xi and Xj respectively, is determined as 

follows: 
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where xi,k is the k-th parameter of the spatial coordinate xi of the i-th firefly.  

In the FA, the movement of a firefly i towards a more attractive (brighter) firefly j is 

determined by the following equation: 
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(15) 

 

where the second term is related to the attraction, while the third term is randomization with 

α being the randomization parameter. Also rand is a random number generator uniformly 

distributed in [0, 1]. 

In this paper, the modified equation proposed in [22] for computing α is employed as 

follows:  
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where αmax=1 and αmin=0.2. Also, tmax and t are the numbers of maximum iterations and 

present iteration, respectively. 

 

5.3 Harmony Search-Firefly Algorithm 

In the present study, HS and FA are hybridized to propose an efficient algorithm having for 

optimization of scallop domes for earthquake loadings. At first, a preliminary optimization 

is performed by HS to explore the design space with HMS = n. The optimum solution found 

by HS, say XHS, is directly transformed to the optimal initial population. To complete the 

optimal initial population other individuals, say Xrndi , i=1, 2,..., n-1 are selected on the 

random basis. Thus, the optimal population can be defined as: 

 
] , ...  ,  , [ 1 2 1 HS  nrndrndrndp X,XXXI
 (17) 

 

where Ip, is the optimal initial population. 

This method of generation of the optimal initial population is inspired by Salajegheh and 

Gholizadeh [23]. Now the process of FA begins by employing the optimal initial population. 

The proposed optimization algorithm is called, harmony search-firefly algorithm (HSFA). 

 

 

6. NUMERICAL RESULTS 
 

In the present work, two double layer scallop domes with 8 and 10 segments are considered. 

For both the scallop domes the span is 50.0 m, the height is 10 m and the layer thicknesses is 

1.5 m. The configuration of the mentioned scallop domes is shown in Fig 6. Young’s 

modulus, mass density, yield stress and ultimate stress are 2.1×1010 kg/m2, 7850 kg/m3, 

2.4×106 kg/m2, and 3.6×106 kg/m2, respectively. The computational time is measured in 

terms of CPU time of a PC Pentium IV 3000 MHz. A uniformly distributed load of 250 

kg/m2 is applied on the horizontal projection of the top layer. In this study, vertical 

component of Bam earthquake (Iran-2003) is considered. This component of the earthquake 

contains 13310 points with the PGA of 9.885 m/s2. Here a portion of the earthquake with 

1500 points shown in Fig 6 is considered. The maximum deflection of top node of the 

domes is limited to 5 cm and the overall stability of the structures during the optimization 

process is checked. Thus, in the present work, limitation on maximum deflection and 

keeping the overall stability are considered as the design constraints.  
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(a)                                                                            (b) 

Figure 6. Double layer scallop dome with (a) 8 and (b) 10 segments 

 

 
Figure 7. Vertical component of Bam earthquake (Iran-2003) 

 

The number of individuals in initial population for all optimization algorithms is 25 and 

the maximum number of iterations for both algorithms is limited to 200. The discrete design 

variables are selected from a set of standard Pipe profiles listed in Table 1. In this table, 

cross-sectional area and radius of gyration are given by A and r, respectively. 

 
Table 1: The available list of standard Pipe profiles (TUBO-) 

NO. Profile A (cm2) r (cm) NO. Profile A (cm2) r (cm) 

1 D33.70x2.6 2.540 1.1000 14 D159.0x4.0 19.480 5.4814 

2 D48.30x2.6 3.730 1.6200 15 D168.3x4.0 20.65 5.8102 

3 D60.30x3.2 5.740 2.0200 16 D193.7x4.5 26.75 6.6922 

4 D76.10x3.2 7.329 2.5799 17 D219.1x5.0 33.63 7.5716 

5 D82.50x3.2 7.972 2.8060 18 D244.5x5.4 40.56 8.4557 

6 D88.90x3.2 8.616 3.0321 19 D273.0x5.6 47.04 9.4570 

7 D101.6x3.6 11.080 3.4672 20 D298.5x5.9 54.23 10.3471 

8 D108.0x3.6 11.810 3.6934 21 D323.9x5.9 58.94 11.2450 

9 D114.3x3.6 12.520 3.9161 22 D355.6x6.3 69.13 12.3536 

10 D127.0x4.0 15.450 4.3504 23 D368.0x6.3 71.59 12.7895 

11 D133.0x4.0 16.210 4.5629 24 D406.4x6.3 79.19 14.1475 

12 D139.7x4.0 17.050 4.8004 25 D419.0x7.1 91.88 14.5645 

13 D152.4x4.0 18.650 5.2483 26 D457.2x7.1 100.4 15.9150 
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For all examples, the structural elements of each layer are divided into three groups and 

therefore the optimization problem includes nine design variables: 

 

} ,  , , ,  , , ,  , { Group9Group8Group7Group6Group5Group4Group3Group2Group1 AAAAAAAAAX T 
 (18) 

 

During the nonlinear optimization process, for each element a strain-stress curve is 

considered according to its buckling stress. It is important to note that for all structural 

elements σy, σu and their corresponding strains are identical. 

For presented numerical examples, optimization process in implemented by HS, FA and 

HSFA meta-heuristics and the results are compared. For implementation of HSFA, HS is 

employed in the first 100 generations and FA in the second 100 ones.  

 

6.1. Example 1: A 8-Segment Double Layer Scallop Dome 

The element groups of the 8-segment scallop dome are shown in Fig 8. 

 

     
           Top layer                       Group 1                      Group 2                               Group 3 

     
          Web layer                      Group 4                          Group 5                              Group 6 

  
             Bot layer                       Group 7                          Group 8                            Group 9 

Figure 7. The 8-segment scallop dome with its relative element groups 
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The optimization processes considering nonlinear behavior using HS, FA and HSFA are 

achieved and the results are given in Table 2 in terms of Pipe profiles number of Table 1.  

 
Table 2: Comparison of nonlinear optimal designs for 8-segment double layer scallop dome 

Design variables 
Nonlinear Optimum Design 

HS FA HSFA 

AGroup1 22 24 22 

AGroup2 18 13 18 

AGroup3 21 20 18 

AGroup4 5 10 8 

AGroup5 5 8 8 

AGroup6 9 13 11 

AGroup7 7 8 7 

AGroup8 6 8 8 

AGroup9 15 15 10 

Weight (kg) 92902.25 90459.27 87519.56 

Number of generations 200 200 168 

Overall time (min.) 14322.12 14322.12 12030.58 

Maximum deflection (cm) 4.9974 5.0000 5.0000 

 

The results of Table 2 indicate that the optimum weight of HSFA is 5.79% and 3.25% 

lighter than those of HS and FA, respectively. In the mean time, HSFA converges in 168 

generations while HS and FA require 200 generations for convergence. All of these indicate 

that HSFA possesses better computational performance compared with both HS and FA in 

terms of optimum structural weight and the required number of nonlinear structural 

analyses.  

The time history deflections of nodes 1 to 5 in top layer of 8-segment optimum double 

layer scallop dome found during the optimization process using HSFA is represented in Fig. 8. 

In order to find the factor of safety (FS) of the optimum structure found by HSFA, the 

PGA of the applied earthquake record is increased and nonlinear time history analysis is 

conducted. It is observed that when the PGA is 2.56 times of the original record PGA the 

optimum structure keeps its overall stability and for slightly larger values, say 2.561, the 

structure losses its overall stability and therefore FS for this structure is equal to 2.56. The 

time history deflections of node 1 in top layer of the optimum structure subject to earthquake 

loading with PGA of 2.56 times of the original one is shown in Fig. 9. 
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                   (a)                                                                    (b) 

       
                  (c)                                                                       (d) 

 
               (e) 

Figure 8. Time history deflection of nodes (a) 1, (b) 2, (c) 3, (d) 4 and (e) 5 of the optimum 8-

segmented scallop dome found by HSFA 
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Figure 9. Time history deflection of node 1 of the optimum 8-segmented scallop dome found by 

HSFA for earthquake record with PGA of 2.58 times of the original one 

 

6.2 Example 2: A 10-Segment Double Layer Scallop Dome 

The element groups of the 10-segment scallop dome are shown in Fig 10. 

 

    
             Top layer                        Group 1                          Group 2                           Group 3 

     
           Web layer                        Group 4                          Group 5                           Group 6

   
             Bot layer                       Group 7                          Group 8                            Group 9 

Figure 10. The 10-segment scallop dome with its relative element groups 
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The results of optimization using HS, FA and HSFA considering nonlinear behavior are 

given in Table 3. 

It can be observed that the optimum weight of HSFA is 7.21% and 2.35% lighter than 

those of HS and FA, respectively. Furthermore, the number of required generations by 

HSFA is 172 while HS and FA require 200 generations for convergence. These results 

demonstrate the better performance of HSFA in comparison with HS and FA. 

 
Table 3: Comparison of nonlinear optimal designs for 10-segment double layer scallop dome 

Design variables 
Nonlinear Optimum Design 

HS FA HSFA 

AGroup1 18 18 17 

AGroup2 10 10 14 

AGroup3 19 18 17 

AGroup4 4 3 5 

AGroup5 5 4 6 

AGroup6 10 10 10 

AGroup7 4 4 6 

AGroup8 5 5 5 

AGroup9 8 10 10 

Weight (kg) 75063.45 71325.98 69650.91 

Number of generations 200 200 172 

Overall time (min.) 25754.09 25754.09 22148.72 

Maximum deflection (cm) 4.9809 5.0000 4.9981 

 

The time history deflections of nodes 1 to 5 in top layer of 10-segment optimum double 

layer scallop dome found during the optimization process using HSFA is represented in Fig. 

11. 

In order to find the FS of the optimum structure found by HSFA, as well as the first 

example, the PGA of the applied earthquake record is increased and nonlinear time history 

analysis is conducted. It is observed that when the PGA is 2.35 times of the original record 

PGA the optimum structure keeps its overall stability and for the larger values the structure 

losses its overall stability and therefore FS for this structure is equal to 2.35. The time 

history deflections of node 1 in top layer of the optimum structure subject to earthquake 

loading with PGA of 2.35 times of the original one is shown in Fig. 12. 
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                  (a)                                                                       (b) 

    
                 (c)                                                                      (d) 

 
                 (e) 

Figure 11. Time history deflection of nodes (a) 1, (b) 2, (c) 3, (d) 4 and (e) 5 of the optimum 10-

segmented scallop dome found by HSFA 
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Figure 12. Time history deflection of node 1 of the optimum 10-segmented scallop dome found 

by HSFA for earthquake record with PGA of 2.35 times of the original one 

 

 

7. CONCLUSIONS  
 

The main objective of present study is to design scallop domes subject to earthquake loading 

for optimal weight considering nonlinear behavior. The design variables (cross-sectional 

areas of the element groups) are selected from a set of available standard sections 

consequently the optimization problem is discrete. The dynamic nonlinear nature of the 

tackled problem necessitates that a powerful meta-heuristic optimization algorithm to be 

employed. As the standard version of meta-heuristics are not usually efficient for solving 

such complex problems, in the present study a combination of harmony search (HS) and 

firefly algorithm (FA) methods is proposed as harmony search firefly algorithm (HSFA) for 

dealing with the mentioned problem. Implementation of HSFA includes following phases: at 

first, a preliminary optimization is accomplished by HS then an optimal initial population is 

produced using the first phase results and finally, FA is employed to find optimum design 

using the produced optimal initial population. In order to demonstrate the efficiency of the 

proposed HSFA meta-heuristic, two numerical examples including a 1200-bar 8-segment 

and a 1500-bar 10-segment double layer scallop domes subject to earthquake loading are 

presented. The numerical results indicate that for both examples, the HSFA not only 

converges to better solution but also requires less computational efforts compared with HS 

and FA. Therefore, it can be concluded that the proposed HSFA can be effectively employed 

for design optimization of space structures subject to earthquake loading considering 

nonlinear behavior. 
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