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ABSTRACT

The excavation damaged zone (EDZ) can be defined as a rock zone where the rock
properties and conditions have been changed due to the processes related to an excavation.
This zone affects the behavior of rookass surrounding the construction that reduces the
stability and safety factor and increase probability of failure of the structure. In this paper, a
methodology was examined for computitige creation probability oflamaged zone by

Latin hypercubesampling based on a feefbrward artificial neural network (ANN)
optimized by hybrid particle swarm optimization and genetic algorithm (HPSOGA). The
HPSOGA was carried out teedide the initial weights of the neural network. A case study in

a test gallery of the Gotvand dam, Iran was carried out and creation probabilities of 0.191 for
highly damaged zone (HDZ) aiddb02for EDZ were obtained.
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1. INTRODUCTION

The most cost effective method for excavating underground spaces in massive hard rocks,
where the uniaxial compressive strength very often exceeds 200 MPa, is drilling and blasting
[1]. A very important concern often arises with this method: unwanted damage induced by
blasting beyond the desired perimeter of the underground space. The significance and
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importance of this damage have beemradsed by various researcHés4]. Perimeter
blasting techniques such as smooth blas{ifigare commonly used to minimize this
damage, complemented by thearet blast damage tables and charts. Although these
precautionary measures are taken, blast damage is still inevitable and the conceived
consequences are evidenced in the form of increased support cost and requirements,
reduction in tunnel life, unforeseeaability problems originating from blast damage, slow
tunnel advance, and conduit for water flow.

In the last decades, in different engineering fields, various methods for reliability analysis
have been developed to include uncertainties associatechaiérial properties and geometry,
loading and boundary conditions. There are three major methods to uncertainty analysis:
interval analysis, fuzzy logic and probabilistic analysis (the most well developed mgtjods)
Methods using probability density functions are generally referred to as probabilistic methods.
These methods produce the nominal value of the objective functions and constraints as well as
their probability density functions. Monte Carlo simulation is the most basic, simplest approach
among all probabilistic design methods, but on the other hasdaitvery time consuming
method 7]. To solve the problem of excessive number of samples required to perform a Monte
Carlo simulation, there have been several other simulation techniques developed over the years.
In general these thoiques can be categorized under the general heading of "Variance
Reduction Techniques" and divided into three basic classes: stratified sampling, importance or
adaptive sampling and quablonte Carlo simulatiofi7]. In general, thee techniques can often
reduce the number of simulations required by several orders of magnitude as compared to basic
Monte Carlo simulation. Of the stratified sampling techniques, latin hypercube sampling (LHS)
is arguably the most popular versipf). The LHS is a technique for reducing the number of
simulations needed to obtain reasonable results. Essentially, the LHS is the same as the Monte
Carlo simulation except that the sampling process is more effective and leading ta a bette
coverage of the sampling space with a smaller number of iter§@oris this paper, theHS
method is used to compute reliability of constraints in a reasonable time. By using the LHS, an
estimae of the creation probability ofamaged zone can be obtained.

Finding the creation probability afamaged zone can be led to a better undersiriae
risks of a project, a more efficient of establishing geotechnical zoning and the costs can be
estimated with more reliability. Furthermore, it can be utilized for optimal designs of support
pattern, blast pattern, and excavation method of undedjspaces.

Moreover, over the years, the application of artificial neural network (ANN) in geotechnical
engineering has been growing. In recent years, there is a growing interest of using ANNs to
assist building a reasonable model structure for physodinear systemf9]. ANNs have a
special capacity to approximate the dynamics of nonliggstems in many applications in a
black box mannef1(]. Given sufficient inpubutput data, ANN is able to approximate any
continuous fuation to arbitrary accuradyt1]. In addition, several different attempts have been
proposed by various researchers to propitiate this training problem. These includegmposin
constraints on the search space, adjusting training parameters, restarting training at many
random points, and restructuring the ANN strucf@teOne of the most promising techniques
is by introducing adaptation of network training using hybrid particle swarm optimization and
genetic algorithms (HPSOGA). Montana and DY reported the successful application of
a GA to a relatively large ANN problem. They proved that GA produce results superior than
back propagation (BP).
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In this paper, a new methodology is introdiide determinehe creation probability of
damaged zone an underground structure by the LHS based on th¢iRSIBGA model.
Based upon the results of plate loading test and using the LHS based on tHeP&OGA
model, samples of data were generated. Usiaglaita generated, the creation probability of
damaged zone can be estimated. To show the ability of the methodology proposed, field data
from a test gallery of the Gotvand dam, I ran
usingtheLHS based on the ANMIPSOGA modefor estimation othecreation probability of
damaged zone around underground spacasinique research.

2. A BRIEF REVIEW OF ME THODS USED IN THIS STUDY

2.1Latin hypercube sampling

latin hypercube sampling (LHS) was first proposed by McKay efld. and has been
further developed for different purposes by several researidh¥ k5. The LHS provides a
constrained sampling scheme instead of random sampling according to the direct Monte
Carlo simuétion. A comparison of random sampling with LHS for two variables is shown in
Figure 1. In the LHS, the region is uniformly divided iMManonroverlapping intervals for

each random variable; whef¢ is the number of random numbers, which need to be
generagd for each random variable. Thenonoverlapping intervals are selected to be of

the same probability of occurrence. Théwh,different values in theN non-overlapping
intervals are randomly selected for each random variable. This can be accomplished by
initially generatingN random numbers. These values represent the percentage position of
each generated value of a variable within an intefté]. Therefore, these values are
linearly transformed to the random numbers in the-owerlapping intervals for each
random variable using the following equation:

_u (-1
u = +N— (1)

"N

where;i=1,2,..,nu=a random number; ang= random number in th& interval. From Eq. (1),
it is quite obvious that there is only one generated value that is randomly selected within each of
theN intervals for each random variable. Thuglue to the following relationship:

Dy, & @
N N

where,(i - 1)/N andi/N are lower and upper bounds for tflénterval. Them values obtained
for x; (the first random variable) are paired in a random manner (equally likely cdiob)na
with then values ofx; (the second random variable). Theggairs of &;,%) are combined in a
random manner with the values ofx; (the third random variable) to form the firstriplets
(X1,%2, X3), and so on, until thé-2)th n-triplets &i1,%, Xn2, Xn1, Xo) (K = number of random
variables) are formed. Thus, Brix k matrix is formed16).
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Figure 1. A Comparison of random sampling with the LHS for two variables

About the LHS, it can be said that a reliability problem is normally formulated, using a
failure functiong (x,, x,, ..., x, ) where, X, X,,...,X, are random variables. Violation of the

limit state is defined by the conditian(X,, X,,...,X, )¢ Cand the probability of damage, ,
is expressed by the following expresdjiti|:

Ps =P[g(X1,X2,,)§1) ¢q
A Fedln Ko X g X, )oX,0X,...0X,

9 (X1, Xz % )60

©)

I
-l

the joint probability density function. The limit state function, also called performance function,
define the boundary betweehe safe and failure regions in the design parameter space. This
function plays an important role in the development of reliability analysis methods. Figure 2
shows the concept of limit state function.

The LHS allows the determination of an estimaténefgrobability of damage, given by:

P =8 (X1 XX, ) )

where, 1 (x,,X,,...,X, ) is a function defined by:
gl if g(X;,X,,....X, )¢ 0

I (X, X5, X, )=

. ©®)
{0 if g(x,,X,,....X,)0C

According toEq. (4) N independent sets of valuss, x,,...,x, are obtainedased on the

probability distribution for each random variable and the failure function is computed for each
sample. Using the LHS, an estimate of the probability of structural failure is obtained by:
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= ©)

where N is the totahumber of samples, ard, is the number of samples locating at the failure
region whereg (X,, X,,...,X, )¢ C.

X Limit state function
g(x)=0

Safe region
g(x)>0

Failure region
g(x)<0

X

Figure 2. The concept of limit state function

2.2 Artificial neural network

Artificial neural networks (ANNSs) are parallel information processing methods that can express
complex and nonlinear relationship use, number of ioptput training patterns from the
experimental data. ANNs prowda nonlinear mapping between inputs and outputs by its
intrinsic ability [18]. The succesm obtaining a reliable and robust network strongly depends

on the correct data preprocessing, correct network training choice, and correct architecture
selection[19]. The most common neural network architecture is the-fla@eard neural
network. Feedorward neural network is theetwork structure in which the information or
signals will propagates only in one direction, from input to oufp8t20]. The network is
trained by performing optimization of weights for each node interconnection and bias terms,
until the values output at the output layer neurons are as close as possible to the actual outputs
[21].

The data are split inttwo sets, a training data set and a validating data set. The model is
produced using only the training data. The validating data are used to estimate the accuracy of
the model performance. In training a network, the objective is to find an optimum set of
weights[21]. When the number of weights is higher than the number of available data, the error
in-fitting the non trained data initially decreases but then increases as the network becomes
overtrained. In contrast, when the number of weights is smaller than theenofnthata, the
overfitting problem is not crucidl2]].

In the last years, ANN technology, a siidld of artificial intelligence, are being used to
solve a wide variety of problenj22-26).

2.3 Genetic algorithm
The genetic algorithm (GA) is a frequently and walbwn used evolutionary computation
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technique. This method was originally developed by John HoJ@#fjcand Hassan et 4R§].

The idea was inspired from Darwinds natur al S
survival of the fittest. It uses the principles of genetics and evolution and mimics the
reproduction behavior observed in biologicapplations. In the GA, a candidate solution for a
particular problem is called an individual or a chromosome and consists of a linear list of genes.
The search in the GA begins from a randomly generated population of designs that evolve over
successive gemations (iterations), eliminating the need for a user supplied startind 2jint

To perform its optimization like process, the GA employs three operators to propagate its
population from one generation to another. The first operator is the "selection" operator in
which the GA takes into account the principal of "survival of the fittest" to select and generate
individuals (design solutions) that are adapted to their emagoh The second operator is the
"crossover" operator, which mimics mating in biological populations. The crossover operator
propagates features of good surviving designs from the current population into the future
population, which will have a better féss value on average. The last operator is "mutation”,
which promotes diversity in population characteristics. The mutation operator allows for global
search of the design space and prevents the algorithm from getting trapped in local minima

[29).

2.4 Particle swarm optimization

The particle swarm optimization (PSO) is one of the recent evolutionatignigation
methods. This technique was originally presented by Kennedy and EQ@8jart order to

solve problems with continuous search space. The PSO is based on the metaphor of
communcation and social interaction, such as fish schooling and bird flocking. The PSO is
similar to the GA in many common points. It performs the search using a population of
particles that correspond to individuals in the GA. Both algorithms start with améndo
generated population. The PSO does not have a direct recombination operator. However, the
stochastic acceleration of a particle toward its previous best position, as well as toward the
best particle of the swarm, resembles the recombination procedumvalutionary
computation[30]. In comparison to the GA, the PSO has some attractive characteristics. It
has memory, thus the knowledge of good solutions is retained by all particles, whereas in the
GA, previous knowledge of thgroblem is destroyed once the population changes. The PSO
does not use the filtering operation (such as selection in the GAs), and all the members of
the population are maintained through the search procedure to share their information
effectively. The P® uses social rules to search in the design space by controlling the
trajectories of a set of independent particles. The position of each pagticegresenting a
particular solution of the problem, is used to compute the value of the fitness funcdtien
optimized. Each particle may change its position and consequently may explore the solution
space, simply varying its associated velocity. In fact, the main the PSO operator is the
velocity update, which considers the best position, in terms of ditmalsie reached by all

the particles during their path®, , and the best position that the agent itself has reached
during its search,P', resulting in a migration of the entire swarm toward the global
optimum [31].

At each iteration the particle moves around according to its velocity and position; the cost
function to be optimized is evaluated for each particle in order to rank the current location. The
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position of each particle is upddtasing its velocity vector as shown in Eqg. (8) and depicted in
Figure 3.

Vit=wV € (R X)) Ge(B X9 7)
xitﬂzxit 'Viti (8

£+1
X

o’

\ swarm influence

particle memory
influence

i influence

Figure 3. Depiction of the velocity and position updates in PSO (2&pr

where V' is the velocity vector at iteratidnr, andr, represents random numbers in the range
[0,1]; Pgt denotes the best ever particle position of particiad p' corresponds to the global

best position in the swarm up to iteratiof80]. The remaining terms are problatependent
parameters; for example;; and C, represent "trust" parameters indicating howcm
confidence the current particle has in its€lf: (cognitive parameter) and how much confidence
ithasinthe swarm@: soci al parameter), and ¥ is the
important role in the PSO convergence behavior sinceihgoyed to control the exploration
abilities of the swarm. It directly influences the current velocity, which in turn is based on the
previous history of velocities. Large inertia weights allow for wide velocity updates providing
the global explorationfdahe search space, while small inertia values concentrate the velocity
updates to nearby regions of the design sf2i#je

2.5 Hybrid genetic algorithrand particle swarm optimization

Although the GAs have been successfully applied to a wide range of problems, using the GAs
for largescale optimization could be very expensive tluits requirement of a large number of
function evaluations for convergence. This would result in a prohibitive cost for computation of
function evaluations even with the best computational facilities available t[R8y
Considering the efficiency of the PSO and the compensatory property of the GA and the PSO,
combining the searching abilities of both methods in one algorithm seems to be a logical
approach. In this paper, the hybof the GA and the PSO named the HPSOGA, originally
presented by Juafg4], was used. The flowchart of the HPSOGA is shown in Figure 4.
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Figure 4. Flowchart of the HPSOGA

3. EXCAVATION DAMAGE ZO NE

Excavation of an underground construction by drilling and blasting creates a zone of
damaged rock around the structure. This zone affects the behavior of rock mass surrounding
the construction (Figure 5), thakduces the stability and safety factor and increase
probability of failureof the structureDifferent definitions for the damaged disturbed

zone have been used. In this paper, the definitions of Tsang &bplfor excavation
disturbed zone (EdZ), excavation damaged zone (EDZhighdy damaged zone (HDZAye
adopted (Figure 6).
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Figure 5. Behavior of rock mass surrounding an underground coti@tru
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Figure 6. Zones around an underground construction

4. SITE DESCRIPTIONS AND GEOLOGY OF CASE STUDY

The Gotvand dam is located on the Karun river in the Khuzestan province, south west of Iran
(Figure 7). This dam with 178 m height and 730 m leofgambankment, regulates the water
of the Karun river, also serves power generation, flood control and irrigation needs
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Figure 7. Location of Gotvand dam

The geology of area is mainly including two formations; Bakhtiary (BK) and Aghajari (AJ).
The BK formation consists of conglomerate, cherty limestone and inter bedded mudstones
and sandstone. The AJ formation contains 2 to 5 m thick layers of gray and greenish gray
sandstones, inter bedded claystone, siltstone and brow reddish marlstone

4.1 Deternmation of deformation modulus by plate loading test

The creation of EDZ due to a blasting impact and stress redistribution after excavation
causes significant changes on the mechanical and physical properties and hydraulic
conductivity around an undergnogi excavation. The modulus of deformation is an
important parameter among geomechanical parameters that represents the behavior of rock
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mass after excavation, which can be used for the assessment of EDZ.

The plate loading test (PLT) is the most familiar stu experiment in rock mass
studying. It is generally performed in special test galleries or underground spaces excavated
by conventional drill and blast, having a span of 2 m and a height of 35]in the PLT,
load is directly mposed on the wall of gallery, and the resultant displacement is measured
on the loading point in rock. A cycle of loading and unloading (Figure 8) provides the load
displacement curve, which is necessary to determine deformation modulus.

Solid Line = Loading
12~ Dash Line = Un-Loading

I Depth of measurement
(0.75m) Surface measurement

Presure (MPa)

0 FEE SO B e S /S PR R i } :r PR Eilind
0 0.5 15 2 25
Displacement, mm

Figure 8. Presgedisplacement curves obtained from the RBT]

The recoverable displacement is used to evaluate the deformation modulus based on the
theory of elasticity. Depending on the loading condition, the PLT can be classified into a
flexible type and a rigid type. In thipaper, the flexible PLT procedure suggested by the
Il SRM 1981 in which Boussinesqb6s equation
results is used. An illustration of a PLT site is shown in Figure 9. The PLT was carried out

in a test gallery, excated by drill and blast, at the Gotvand dam to determine deformation
modulus for the assessment of EDZ.

D g LS =y . - Instrumentation hole for
- - é _displacement measurement

Figure 9.The setup of PLT
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5. RESEARCH METHODOLOGY

In this paper, a new methodology is introduced to deterrfiaecreation probabilityof
excavatim damaged zone around an underground structure. A primary tigseeeation
probabilityof excavation damaged zone based on the ANISOGA model is how to generate

the training samples. Since the relation function is not known explicitly and is congpliate

make a relation between input variables and output to generate random value for each variable,
the ANN-HPSOGA model can be used. In this paper, based upon the results of the PLT from a
test gallery of the Gotvand dam, Iran and using_tH8 based on the ANNIPSOGA model
samples of data were generated (Figure 10). By using the data generated, tba creati
probability of damaged zone can be estimated.

| ANN-HPSOGA model

Hidden layer 1

' Latin hypercube sampling |

Hidden layer 2

Input layer

:Eél /\ T E x <
o= =[] s \

Figure 10Latin hypercube samplingased on the ANNHPSOGA model

Output layer

Deformation modulus

5.1. Prediction of deformation modulus, using the ANPRSOGA model
5.1.1 Tuningparameterdor the GA and the PSO

To develop an accurate ANN model, the training, and validation processes are the important
steps. In the training process, a@enputoutput patterns is repeated to the ANN. From that,
weights of all the interconnections between neurons are adjusted until the specified input yields
the desired output. Through these activities, the ANN learns the correcbutput response
behavior. The model training stage includes choosing a criterion of fit (mean squared error) and
an iterative search algorithm to find the network parameters that minimizes the criterion.
Hybrid the GA with PSO (HPSOGA) was used in an effort to formalizstematic approach

to training the ANN, and to insure creation of a valid model. It was used to perform global
search algorithms to update the weights and biases of neural network. The control parameters
used for running the PSO and the GA are shown ite$dband 2 respectively:

Table 1: The control parameters used for running the PSO

Parameter Value
Number of population (swarm size) 50
Number of generations 1000
Personal learning coefficient 1.4962
Global learning coefficient 1.4962
Inertia weights 0.73

Fitness Mean squared error
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Table 2: The control parameters used for running the GA

Parameter Value
Number of population 50

Number of generations 1000
Crossover probability 0.7
Mutation probability 0.2
Selection function Ranking
Fitness Mean gjuared error

5.1.2 Network architecture

Architecture of the ANN model includes type of network, number of input and output neurons,
transfer function, number of hidden layers as well as number of hidden neurons. Generally, the
input neurons and outpuearons are problem specifitl]. In this paper, mulinput single

output structure had been utilized; therefore, there will be only one output neuron. The
architecture oftte network is given in Table 3.

Also, it is important that the transfer function possesses the properties of differentiability and
continuity. Generally, log sigmoid function is utilized in the hidden layer and the output
generated has a value betweem@® & however, the linear transfer function is more suitable in
output[11]. The equations for the log and linear transfer functions used in this work are shown
in Egs. (9) ad (10):

fx)=—+ (©)
1+exp(x)
f(x)=x (10)
Table 3: The architecture of the network
Parameter Value
No. of input neurons 3
No. of output neurons 1
No. of hidden layers 2
No. of neurons in first hidden layer 5
No. of nairons in second hidden layer 4
No. of training data sets 79
No. of testing data sets 20

5.1.3 Training and validation results

In this paper, the ANNHPSOGA model was used fwredict deformation modulus, using
MATLAB environment.Figure 11 shows the dntecture of the ANNHPSOGA model used.
As it can be seen in Figure 11, X, Y and Z coordinates (location of installation extensometers
from the portal of test gallery that in these points, displacements and modulus of deformations
were obtained)wvere defined as input parameters into the ARRPSOGA model and the
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deformation modulus as output. The model proposed was trained with 79 data sets collected
from a test gallery in the Gotvand dam for training phase. A few samples of the training and
testing data setare shown in Tables 4 and 5 respectively.

Hidden layer 1
g Hidden layer 2
Input layer -

\ ’/ ) Output layer
N Apetia
NAN, N
Extensometer Coordinates of ' T OVAHAT J Deformation modulus
anchors measurement points NN

ANN-HPSOGA model

Instrumentation hole
for displacement
measurement

Deformation
measurements

Figure 11. Architecture of the ANNPSOGA model

A comparison between predicted values of deformation modulus by theHREDGA
model and measured values for 79 data sets at training and testing phases is Bigure 12.
As shown in Figure 12, the results of the AMRSOGA model in comparison with actual data
show a good precision of the ANNPSOGA model (see Table 7). It should be noted that the
predicted and measured deformation modulus (Figure 12kespneormalized values that was
calculated using the following equation:

Z(E - Emin) -1 (11)
(Emax- Emin)

Normalized deformatiommod ulus

where,Enin andEmnaare the minimum and maximum deformation modulus of the dathins
this study, respectively.
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Figure 12. Comparison between measured and predicted deformation nadrdirsng,b
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Table 4: A few samples of the ining data setdhe ANN-HPSOGAmodel

Depth of extensometer ir Input Output
No. instrumentation hole Deformation
(m) X(m) Y (m)  Z(m) modulus (GPa)
1 0.5 6 7.75 3 3.18
2 1 6 8.25 3 6.48
3 0.4 7.65 6 9 7.75
4 1.2 8.45 6 9 14.9
5 0.4 7.65 6 27 4.3
6 0 6 7.25 9 2.11
7 0.9 6 3.85 27 9.42
8 2.3 9.55 6 3 24.95
9 0.4 7.65 6 27 4.32
10 0.5 6 4.25 9 3.33
Table 5: A few samples for testing the ANNPSOGA model
Input Output
NoO Depth of extensometer ir Deformation
instrumentation hole (m) X (m) Y (m) Z(m) modulus(GPa)
1 0 6 7.25 3 0.955
2 0.6 4.15 6 3 9.274
3 0.9 6 3.85 3 2.55
4 0.5 6 7.75 27 3.829
5 1.2 3.55 6 27 9.66

Also, performance predion of the predictive model proposed was evaluated, gsiefficient

of determination ¢), mean squared error (MSE), root mean square error (RMSE), median
absolute error (MEDAE) and variance account for (VAF) (Table 6) wheiethe number of
samplesyar denotes the variancgandy' are the measured and predicted values, respectively.
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Table 6: Statistical indicators

Statistical indicator Equation

1N
Mean squared error MSE=1-a (y -y’

i=1

_ |1 n )
Root mean square error RMSE= Wia;l( y -

- MEDAE =median { - yi

Median absolute error edian ¢ - yi |

varly - yi)
var(y )

_ a
Variance account for VAF =4
¢

Performance analysis of the ANNPSOGA model for predicting deformation modulus is
shown in Table 7.

Table 7: Performance of the model for predicting defdion modulus

Description R? MSE RMSE MEDAE VAF

Trainingdata 0.92 0.02 0.16 0.02 90.98
Testing data 0.87 0.08 0.27 0.08 73.88

The performance indices obtained in Table 7 indicate the high performance of the ANN
HPSOGA model that can be used sucedlysfor the prediction of deformation modulus.
Furthermore, correlation between measured and predicted values of deformation modulus for
training and testing phases are shown in Figure 13.
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Figure 13. Correlation between measured and predicted \aldeformation modulua
Training,b Testing

5.2 Estimation of thecreationprobability of damaged zone

The actual modulus of deformation for rock mass in the Gotvand dam is 5[3&.Paso, a
threshold of less than 2 GPa was chosen to recognize the HDZ, which is a part of EDZ and a
threshold of less than 5 GPa was chosen to recognize the EDZ. Therefore, limit state function
was defined for EDZ as E<5 GPa (Figure 14) and HDZ as E<2 GPa.

Figure 14. Limit state function defined for t&®Z

To assess the probability of creation of EDZ and HDZ, S based on ANN
HPSOGAmModelwas used. The creation probability of damaged zone can be estimated as the
ratio of the number of samples locating at daenaged regiofHDZ, EDZ) (\y) to the total
number of samples generated) (Eq. (6)] To check the convergence of the LHS, the
probabilityof creationwas calculated with 13 different values\ofThe results obtained, listed
in Table 8, indicate that the LHS with 30%$8mplesthe rumber of sample points in the HDZ
and the EDZ is 57182 and 150721 respectively) was converged and the probability of creation
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