Showing 2 results for Gordani
Ehsan Tarighati, Majid Tavoosi, Ali Ghasemi, Gholam Reza Gordani,
Volume 19, Issue 1 (March 2022)
Abstract
In the present study, the effects of boron on the structural and magnetic properties of AlCrFeNiMnSiBx high entropy alloys (HEAs) were investigated. In this regards, different percentages of boron element were added to the based composition and the samples were identified using X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM) methods. Based on results, the tendency of Si element to formation of silicide phases prevents from the stabilization of single FCC and BCC solid solution phases in AlCrFeNiMnSi alloy. The boron element has significant effects on destabilization of silicide phases and by increasing in the percentage of this element, the simple BCC solid solution phase has been dominate phase. Of course, boron has distractive effects on magnetic properties of prepared alloys and the saturation of magnetization of AlCrFeNiMnSiBx HEAs decrease from 29.8 emu/g to about 6 emu/g by increasing the boron content.
Mohammad Molaahmadi, Majid Tavoosi, Ali Ghasemi, Gholam Reza Gordani,
Volume 20, Issue 2 (June 2023)
Abstract
Investigation the structural and magnetic properties of nanocrystalline Co78Zr17B2Si1W2 alloy during melt spinning and annealing processes were the main goal of this study. In this regard, samples were prepared using vacuum induction melting, melt spinning and subsequent annealing. The specimens were evaluated using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), differential scanning calorimetry (DSC) and vibrating sample magnetometer (VSM). Based on results, nanocrystalline Co5Zr single phase with hard magnetic properties (Ms=29.5 emu/g and Hc=2.7 kOe) successfully formed during melt spinning process (at wheel speed of 40 m.s-1). The coercivity value of rapid solidified sample increased to about 3.2 kOe during annealing process up to 400°C. However, more increasing in annealing temperature lead to the transformation of non-equilibrium magnetic Co5Zr phase to stable Zr2Co11 phase, which has distractive effects on final magnetic properties.