Volume 14, Issue 3 (September 2017)                   IJMSE 2017, 14(3): 1-10 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hasanzadeh R, Azdast T, Eungkee Lee R, Afsari Ghazi A. EXPERIMENTAL POLYMERIC NANOCOMPOSITE MATERIAL SELECTION FOR AUTOMOTIVE BUMPER BEAM USING MULTI-CRITERIA DECISION MAKING METHODS. IJMSE 2017; 14 (3) :1-10
URL: http://ijmse.iust.ac.ir/article-1-923-en.html
Abstract:   (20978 Views)

Material selection is a main purpose in design process and plays an important role in desired performance of the products for diverse engineering applications. In order to solve material selection problem, multi criteria decision making (MCDM) methods can be used as an applicable tool. Bumper beam is one of the most important components of bumper system in absorbing energy. Therefore, selecting the best material that has the highest degree of satisfaction is necessary. In the present study, six polymeric nanocomposite materials were injection molded and considered as material alternatives. Criteria weighting was carried out through analytical hierarchy process (AHP) and Entropy methods. Selecting the most appropriate material was applied using technique for order preference by similarity to ideal solution (TOPSIS) and the multi-objective optimization on the basis of ratio analysis (MOORA) methods respect to the considered criteria. Criteria weighting results illustrated that impact and tensile strengths are the most important criteria using AHP and Entropy methods, respectively. Results of ranking alternatives indicated that polycarbonate containing 0.5 wt% nano Al2O3 is the most appropriate material for automotive bumper beam due to its high impact and tensile strengths in addition to its low cost of raw material. Also, the sensitivity analysis was performed to verify the selection criteria and the results as well.

Full-Text [PDF 4491 kb]   (4912 Downloads)    

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb