Mahdi Yousefi Nejad Attari, Mohhamad Reza Bageri, Ensiyeh Neishabouri,
Volume 23, Issue 3 (9-2012)
Abstract
Decision making about outsourcing or insourcing of manufacturing activities is a type of multiple criteria decision making (MCDM) problem, which requires considering quantitative and qualitative factors as evaluation criteria simultaneously. Therefore, a suitable MCDM method can be useful in this area as it can consider the interactions among quantitative and qualitative criteria. The analytic network process (ANP) is a relatively new MCDM method which can deal with different kinds of interactions systematically. Moreover, the Decision Making Trial and Evaluation Laboratory (DEMATEL) method is able to convert the relations between cause and effect of criteria into a visual structural model as well as handling the inner dependences within a set of criteria. However both ANP method and DEMATEL techniques in their original forms are incapable of capturing the uncertainty during value judgment elicitation. To overcome this problem, here, a new and effective model is proposed based on combining fuzzy ANP and fuzzy DEMATEL for decision making about outsourcing or insourcing of manufacturing activities in uncertain conditions. Data from a case study is used to illustrate the usefulness and applicably of the proposed method.
Fatemeh Hajisoltani, Mehdi Seifbarghy, Davar Pishva,
Volume 34, Issue 1 (3-2023)
Abstract
The main objective of this research is effective planning as well as greener production and distribution of mineral products in supply chain network. Through a case study in cement industry, it considers the design of the mining supply chain network including several factories with a number of production lines and multiple distribution centers. It leaves part of the transportation operation to contractor companies so as to enable the core company to better focus on its products’ quality and also create job opportunities to local people. It employs a multi-period and multi-product mixed integer linear programming model to both maximize the profit of the factory as well as minimize its carbon dioxide gas emissions which are released during cement production and transportation process. Due to the uncertainty of its cost parameters, fuzzy logic has been used for the modeling and solved via a novel fuzzy multi-choice goal programming approach. Sensitivity analysis has also been done on some key parameters. Comparing results of the model with those from the single-objective models, shows that the model has good efficiency and can be used by managers of mining industries such as cement. Although leaving part of the transportation operations to contractor companies increases the number of vehicles used by the contractor companies, its associated decrease in the number of required factory vehicles, improves both objectives of the model. This should be considered by the managers since on top of profit maximization, it can help them build an eco-friendly image. Mining industries generally generate significant amount of pollutions and companies that pay attention to different dimensions of their social responsibilities can remain stable in the competitive market.