Search published articles


Showing 3 results for Meta-Heuristic Algorithms

Amir-Mohammad Golmohammadi, Mahboobeh Honarvar, Hasan Hosseini-Nasab, Reza Tavakkoli-Moghaddam,
Volume 29, Issue 2 (6-2018)
Abstract

The fundamental function of a cellular manufacturing system (CMS) is based on definition and recognition of a type of similarity among parts that should be produced in a planning period. Cell formation (CF) and cell layout design are two important steps in implementation of the CMS. This paper represents a new nonlinear mathematical programming model for dynamic cell formation that employs the rectilinear distance notion to determine the layout in the continuous space. In the proposed model, machines are considered unreliable with a stochastic time between failures. The objective function calculates the costs of inter and intra-cell movements of parts and the cost due to the existence of exceptional elements (EEs), cell reconfigurations and machine breakdowns. Due to the problem complexity, the presented mathematical model is categorized in NP-hardness; thus, a genetic algorithm (GA) is used for solving this problem. Several crossover and mutation strategies are adjusted for GA and parameters are calibrated based on Taguchi experimental design method. The great efficiency of the proposed GA is then demonstrated via comparing with particle swarm optimization (PSO) and the optimum solution via GAMS considering several small/medium and large-sized problems. 


Amir-Mohammad Golmohammadi, Mahboobeh Honarvar, Guangdong Guangdong, Hasan Hosseini-Nasab,
Volume 30, Issue 4 (12-2019)
Abstract

There is still a great deal of attention in cellular manufacturing systems and proposing capable metaheuristics to better solve these complicated optimization models. In this study, machines are considered unreliable that life span of them follows a Weibull distribution. The intra and inter-cell movements for both parts and machines are determined using batch sizes for transferring parts are related to the distance traveled through a rectilinear distance. The objectives minimize the total cost of parts relocations and maximize the processing routes reliability due to alternative process routing. To solve the proposed problem, Genetic Algorithm (GA) and two recent nature-inspired algorithms including Keshtel Algorithm (KA) and Red Deer Algorithm (RDA) are employed. In addition, the main innovation of this paper is to propose a novel hybrid metaheuristic algorithm based on the benefits of aforementioned algorithms. Some numerical instances are defined and solved by the proposed algorithms and also validated by the outputs of exact solver. A real case study is also utilized to validate the proposed solution and modeling algorithms. The results indicate that the proposed hybrid algorithm is more appropriate than the exact solver and outperforms the performance of individual ones.
Ahmad Aliyari Boroujeni, Ameneh Khadivar,
Volume 36, Issue 2 (6-2025)
Abstract

The Traveling Salesman Problem (TSP) is a well-known problem in optimization and graph theory, where finding the optimal solution has always been of significant interest. Optimal solutions to TSP can help reduce costs and increase efficiency across various fields. Heuristic algorithms are often employed to solve TSP, as they are more efficient than exact methods due to the complexity and large search space of the problem. In this study, meta-heuristic algorithms such as the Genetic Algorithm and the Teaching-Learning Based Optimization (TLBO) algorithm are used to solve the TSP. Additionally, a discrete mutation phase is introduced to the TLBO algorithm to enhance its performance in solving the TSP. The results indicate that, in testing two specific models of the TSP, the modified TLBO algorithm outperforms both the Genetic Algorithm and the standard TLBO algorithm in terms of convergence to the optimal solution and response time.


Page 1 from 1