Ali Mohaghar, Mojtaba Kashef, Ehsan Kashef Khanmohammadi,
Volume 25, Issue 2 (5-2014)
Abstract
Considering the major change occurred in business cells from plant to “chain” and the critical need to choose the best partners to form the supply chain for competing in today’s business setting, one of the vital decisions made at the early steps of constructing a business is supplier selection. Given the fact that the early decisions are inherently strategic and therefore hard and costly to change, it’s been a point of consideration for industries to select the right supplier. It’s clear that different criteria must be investigated and interfered in deciding on the best partner(s) among the alternatives. Thereupon the problem might be regarded as a multiple criteria decision making (MCDM) problem. There are a variety of techniques to solve a MCDM problem. In this paper we propose a novel technique by combination of decision making trial and evaluation laboratory and graph theory and matrix approach techniques. Eventually, the results are compared to SAW technique and discussed to come to a conclusion.
Ahmad Aliyari Boroujeni, Ameneh Khadivar,
Volume 36, Issue 2 (6-2025)
Abstract
The Traveling Salesman Problem (TSP) is a well-known problem in optimization and graph theory, where finding the optimal solution has always been of significant interest. Optimal solutions to TSP can help reduce costs and increase efficiency across various fields. Heuristic algorithms are often employed to solve TSP, as they are more efficient than exact methods due to the complexity and large search space of the problem. In this study, meta-heuristic algorithms such as the Genetic Algorithm and the Teaching-Learning Based Optimization (TLBO) algorithm are used to solve the TSP. Additionally, a discrete mutation phase is introduced to the TLBO algorithm to enhance its performance in solving the TSP. The results indicate that, in testing two specific models of the TSP, the modified TLBO algorithm outperforms both the Genetic Algorithm and the standard TLBO algorithm in terms of convergence to the optimal solution and response time.