Search published articles


Showing 2 results for Desirability Function

Mahdi Bashiri, Mahdyeh Shiri, Mohammad Hasan Bakhtiarifar,
Volume 26, Issue 2 (7-2015)
Abstract

There are many real problems in which multiple responses should be optimized simultaneously by setting of process variables. One of the common approaches for optimization of multi-response problems is desirability function. In most real cases, there is a correlation structure between responses so ignoring the correlation may lead to mistake results. Hence, in this paper a robust approach based on desirability function is extended to optimize multiple correlated responses. Main contribution of the current study is the synthesis of ideas considering correlation structure in robust optimization through defining joint confidence interval and desirability function method. A genetic algorithm was employed to solve the introduced problem. Effectiveness of the proposed method is illustrated through some computational examples and some comparisons with previous methods were performed to show applicability of the proposed approach. Also, a sensitivity analysis was provided to show relationship of correlation and robustness in these approaches.

\"AWT


Rassoul Noorossana, Mahdi Shayganmanesh, Farhad Pazhuheian, Mohammad Hosein Rahimi,
Volume 31, Issue 3 (9-2020)
Abstract

Laser marking is an advanced technology in material processing that has a permanent effect on materials. With the use of laser engraving, the material is removed, layer by layer, in the laser path through melting displacement, ablation, and evaporation. Al-SiC is a metal matrix composite, widely used in aerospace, automobile manufacturing, and electronic packaging. Accumulative roll bonding (ARB) is one of the newest manufacturing processes of metal matrix composites, which leads to the production of materials with high strength, low weight, and great environmental compatibility. In this paper, we present the laser engraving of Al-SiC composite samples, which are produced through ARB process, using Q-switched Nd:YAG laser. A 2k factorial design is used to analyze the effect of factors, including assistant gas flow, distance of sample from beam focus location (distance), pulse repetition frequency, and pumping current on the qualitative characteristics of engraved zone (width, depth and contrast of engraved zone). Desirability function is used for optimization. Results based on experimental data indicate the optimal setting of input factors which leads to pre-specified target values of responses.
 

Page 1 from 1