Search published articles


Showing 3 results for Diagnosis

M.h. Fazel Zarandi, M. Zarinbal,
Volume 23, Issue 4 (11-2012)
Abstract

Image segmentation is an essential issue in image description and classification. Currently, in many real applications, segmentation is still mainly manual or strongly supervised by a human expert, which makes it irreproducible and deteriorating. Moreover, there are many uncertainties and vagueness in images, which crisp clustering and even Type-1 fuzzy clustering could not handle. Hence, Type-2 fuzzy clustering is the most preferred method. In recent years, neurology and neuroscience have been significantly advanced by imaging tools, which typically involve vast amount of data and many uncertainties. Therefore, Type-2 fuzzy clustering methods could process these images more efficient and could provide better performance. The focus of this paper is to segment the brain Magnetic Resonance Imaging (MRI) in to essential clusters based on Type-2 Possibilistic C-Mean (PCM) method. The results show that using Type-2 PCM method provides better results.
Amirhossein Masoumi, Rouzbeh Ghousi, Ahmad Makui,
Volume 33, Issue 3 (9-2022)
Abstract

Purpose: Non-cancerous prostate lesions such as prostate calcification, prostate enlargement, and prostate inflammation cause too many problems for men’s health. This research proposes a novel approach, a combination of image processing techniques and deep learning methods for classification and segmentation of the prostate in CT-scan images by considering the experienced physicians’ reports.
Methodology: Due to the various symptoms and nature of these lesions, a three-phases innovative approach has been implemented. In the first phase, using Mask R-CNN, in the second phase, considering the age of each patient and comparison with the standard size of the prostate gland, and finally, using the morphology features, the presence of three common non-cancerous lesions in the prostate gland has investigated.
Findings: A hierarchical multitask approach is introduced and the final amount of classification, localization, and segmentation loss is 1%, 1%, and 7%, respectively. Eventually, the overall loss ratio of the model is about 9%.
Originality: In this study, a medical assistant approach is introduced to increase diagnosis process accuracy and reduce error using a real dataset of abdominal and pelvics’ CT scans and the physicians’ reports for each image. A multi-tasks convolutional neural network; also presented to perform localization, classification, and segmentation of the prostate gland in CT scans at the same time.

Page 1 from 1