Search published articles


Showing 6 results for Preventive Maintenance

Mohammad Saber Fallah Nezhad, Ali Mostafaeipour,
Volume 25, Issue 1 (2-2014)
Abstract

In order to perform Preventive Maintenance (PM), two approaches have evolved in the literature. The traditional approach is based on the use of statistical and reliability analysis of equipment failure. Under statistical-reliability (S-R)-based PM, the objective of achieving the minimum total cost is pursued by establishing fixed PM intervals, which are statistically optimal, at which to replace or overhaul equipments or components. The second approach involves the use of sensor-based monitoring of equipment condition in order to predict occurrence of machine failure. Under condition-based (C-B) PM, intervals between PM works are no longer fixed, but are performed only “when needed”. It is obvious that Condition Based Maintenance (CBM) needs an on-line inspection and monitoring system that causes CBM to be expensive. Whenever this cost is infeasible, we can develop other methods to improve the performance of traditional (S-R)-based PM method. In this research, the concept of Bayesian inference was used. The time between machine failures was observed, and with combining Bayesian Inference with (S-R)-based PM, it is tried to determine the optimal checkpoints. Therefore, this approach will be effective when it is combined with traditional (S-R)-based PM, even if large number of data is gathered.
Amir Noroozi, Saber Molla-Alizadeh-Zavardehi, Hadi Mokhtari,
Volume 27, Issue 2 (6-2016)
Abstract

Scheduling has become an attractive area for artificial intelligence researchers. On other hand, in today's real-world manufacturing systems, the importance of an efficient maintenance schedule program cannot be ignored because it plays an important role in the success of manufacturing facilities. A maintenance program may be considered as the heath care of manufacturing machines and equipments. It is required to effectively reduce wastes and have an efficient, continuous manufacturing operation. The cost of preventive maintenance is very small when it is compared to the cost of a major breakdown. However, most of manufacturers suffer from lack of a total maintenance plan for their crucial manufacturing systems. Hence, in this paper, we study a maintenance operations planning optimization on a realistic variant of parallel batch machines manufacturing system which considers non-identical parallel processing machines with non-identical job sizes and fixed/flexible maintenance operations. To reach an appropriate maintenance schedule, we propose solution frameworks based on an Artificial Immune Algorithm (AIA), as an intelligent decision making technique. We then introduce a new method to calculate the affinity value by using an adjustment rate. Finally, the performance of proposed methods are investigated. Computational experiments, for a wide range of test problems, are carried out in order to evaluate the performance of methods.


Aliakbar Hasani,
Volume 28, Issue 2 (6-2017)
Abstract

In this paper, a comprehensive mathematical model for designing an electric power supply chain network via considering preventive maintenance under risk of network failures is proposed. The risk of capacity disruption of the distribution network is handled via using a two-stage stochastic programming as a framework for modeling the optimization problem. An applied method of planning for the network design and power generation and transmission system via considering failures scenarios, as well as network preventive maintenance schedule, is presented. The aim of the proposed model is to minimize the expected total cost consisting of power plants set-up, power generation and the maintenance activities. The proposed mathematical model is solved by an efficient new accelerated Benders decomposition algorithm. The proposed accelerated Benders decomposition algorithm uses an efficient acceleration mechanism based on the priority method which uses a heuristic algorithm to efficiently cope with computational complexities. A large number of considered scenarios are reduced via using a k-means clustering algorithm to decrease the computational effort for solving the proposed two-stage stochastic programming model. The efficiencies of the proposed model and solution algorithm are examined using data from the Tehran Regional Electric Company. The obtained results indicate that solutions of the stochastic programming are more robust than the obtained solutions provided by a deterministic model.


Amir Mohamadghasemi, Abdollah Hadi-Vencheh, Farhad Hosseinzadeh Lotfi,
Volume 32, Issue 4 (12-2021)
Abstract

Preventive maintenance (PM) of machines has the critical role in a factory or enterprise. It decreases number of failures, increases reliability, as well as minimizes costs of production systems.  The managers’ duty of maintenance section is to prioritize machines and then, implement PM programs for them. Since machines have the different measures with respect to the maintenance costs, reliability, mean time between failures (MTBF), availability of spare parts, etc., the machines evaluation problem can be considered as a multiple criteria decision-making (MCDM) problem. Accordingly, the MCDM techniques can be applied to solve them. The aim of this paper is to extend the ELECTRE III (eLimination et choix traduisant la realite´– elimination and choice translation reality) method to interval type-2 fuzzy sets (IT2FSs) using curved (such as Gaussian) membership functions (MFs). The extended ELECTRE III methodology is then utilized to a maintenance group MCDM (GMCDM) matrix including the quantitative and qualitative criteria. In the proposed approach, the criteria weights, the assessment of alternatives with respect to criteria, and the thresholds are stated with Gaussian interval type-2 fuzzy sets (GIT2FSs). In order to show the effectiveness and applicability of the proposed approach, a case study and an illustrative example are exhibited using real decision-making problems. Due to the high correlation coefficients between our method and the others, as well as the results obtained by the proposed method, it can be taken into account as a valid and reliable approach to prioritize machines for PM.
Motahare Gitinavard, Parviz Fattahi, Seyed Mohammad Hassan Hosseini, Mahsa Babaei,
Volume 33, Issue 4 (12-2022)
Abstract

This paper aims to introduce a joint optimization approach for maintenance, quality, and buffer stock policies in single machine production systems based on a P control chart. The main idea is to find the optimal values of the preventive maintenance period, the buffer stock size, the sample size, the sampling interval, and the control limits simultaneously, such that the expected total cost per time unit is minimized. In the considered system, we have a fixed rate of production and stochastic machine breakdowns which directly affect the quality of the product. Periodic preventive maintenance (PM) is performed to reduce out-of-control states. In addition, corrective maintenance is required after finding each out-of-control state. A buffer is used to reduce production disturbances caused by machine stops. To ensure that demand is met during a preventive and corrective maintenance operation. All features of three sub-optimization problems including maintenance, quality control, and buffer stock policies are formulated and the proposed integrated approach is defined and modeled mathematically. In addition, an iterative numerical optimization procedure is developed to provide the optimal values for the decision variables. The proposed procedure provides the optimal values of the preventive maintenance period, the buffer stock size, the sample size, the sampling interval, and the control chart limits simultaneously, in a way that the total cost per time unit is minimized. Moreover, some sensitivity analyses are carried out to identify the key effective parameters.
Amir Nayeb, Esmaeil Mehdizadeh, Seyed Habib A. Rahmati,
Volume 34, Issue 2 (6-2023)
Abstract

In the field of scheduling and sequence of operations, one of the common assumptions is the availability of machines and workers on the planning horizon. In the real world, a machine may be temporarily unavailable for a variety of reasons, including maintenance activities, and the full capacity of human resources cannot be used due to their limited number and/or different skill levels. Therefore, this paper examines the Dual Resource Constrained Flexible Job Shop Scheduling Problem (DRCFJSP) considering the limit of preventive maintenance (PM). Due to various variables and constraints, the goal is to minimize the maximum completion time. In this regard, Mixed Integer Linear Programming (MILP) model is presented for the mentioned problem. To evaluate and validate the presented mathematical model, several small and medium-sized problems are randomly generated and solved using CPLEX solver in GAMS software. Because the solving of this problem on a large scale is complex and time-consuming, two metaheuristic algorithms called Genetic Algorithm (GA) and Vibration Damping Optimization Algorithm (VDO) are used. The computational results show that GAMS software can solve small problems in an acceptable time and achieve an accurate answer, and also meta-heuristic algorithms can reach appropriate answers. The efficiency of the two proposed algorithms is also compared in terms of computational time and the value obtained for the objective function.


Page 1 from 1