Mohsen Khezeli, Esmaeil Najafi, Mohammad Haji Molana, Masoud Seidi,
Volume 32, Issue 2 (6-2021)
Abstract
One of the most important fields of logistic network is transportation network design that has an important effect on strategic decisions in supply chain management. It has recently attracted the attention of many researchers. In this paper, a multi-stage and multi-product logistic network design is considered.
This paper presents a hybrid approach based on simulation and optimization (Simulation based optimization), the model is formulated and presented in three stages. At first, the practical production capacity of each product is calculated using the Overall Equipment Effectiveness (OEE) index, in the second stage, the optimization of loading schedules is simulated. The layout of the loading equipment, the number of equipment per line, the time of each step of the loading process, the resources used by each equipment were simulated, and the output of the model determines the maximum number of loaded vehicles in each period. Finally, a multi-objective model is presented to optimize the transportation time and cost of products. A mixed integer nonlinear programming (MINLP) model is formulated in such a way as to minimize transportation costs and maximize the use of time on the planning horizon. We have used Arena simulation software to solve the second stage of the problem, the results of which will be explained. It is also used GAMS software to solve the final stage of the model and optimize the transporting cost and find the optimal solutions. Several test problems were generated and it showed that the proposed algorithm could find good solutions in reasonable time spans.
Arifa Khan, Saravanan P,
Volume 35, Issue 3 (9-2024)
Abstract
Optimizing production in the plastic extrusion industry is a pivotal task for small scale industries. To enhance the efficiency in today’s competitive market being a small-scale manufacturer over their peers is challenging. With the limited resources, having constraints on manpower, capital, space, often facing fluctuations in demand and production, simultaneously maintaining high quality became very important for the success. Among the plethora of KPIS used in manufacturing, Overall Equipment Effectiveness (OEE) stands out as corner stone. In this study, we collected real-world data from a plastic extrusion company. i.e., an HDPE Pipe manufacturing company. It serves as the backdrop for our study, this is based on the plastic extrusion sector and set out a goal of enhancing OEE through a comparative investigation of various ML models. To forecast and estimate OEE values, we used various Machine Learning models and examine each algorithm’s performance using metrics like Mean Squared Error (MSE) and model comparisons using the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC), creating a comprehensive picture of each algorithm’s strength which enables the small businesses to make informed decisions and empowers them to stay agile and adapt to the changes in the manufacturing environment.