Showing 2 results for Multi Objective Programming
Sasan Khalifehzadeh, Mohammad Bagher Fakhrzad,
Volume 29, Issue 3 (9-2018)
Abstract
Abstract
Production and distribution network (PDN) planning in multi-stage status is commonly complex. These conditions cause significant amount of uncertainty relating to demand and lead time. In this study, we introduce a PDN to deliver the products to customers in the least time and optimize the total cost of the network, simultaneously. The proposed network is four stage PDN including suppliers, producers, potential entrepots, retailers and customers with multi time period horizon with allowable shortage. A mixed integer programming model with minimizing total cost of the system and minimizing total delivery lead time is designed. We present a novel heuristic method called selective firefly algorithm (SFA) in order to solve several sized especially real world instances. In SFA, each firefly recognizes all better fireflies with more brightness and analyses its brightness change before moving, tacitly. Then, the firefly that makes best change is selected and initial firefly moves toward the selected firefly. Finally, the performance of the proposed algorithm is examined with solving several sized instances. The results indicate the adequate performance of the proposed algorithm.
Roza Babagolzadeh, Javad Rezaeian, Mohammad Valipour Khatir,
Volume 31, Issue 2 (6-2020)
Abstract
Sustainable supply chain networks have attracted considerable attention in recent years as a means of dealing with a broad range of environmental and social issues. This paper reports a multi-objective mixed-integer linear programming (MILP) model for use in the design of a sustainable closed loop supply chain network under uncertain conditions. The proposed model aims to minimize total cost, optimize environmental impacts of establishment of facilities, processing and transportation between each level as well as social impacts including customer satisfaction. Due to changes in business environment the uncertainty existed in the research problem, in this paper the chance constrained fuzzy programming approach applied to cope with uncertainties in parameter of the proposed model. Then the proposed multi-objective model solves as single-objective model using LP-metric method.