Farid Khoshalhan, Ali Nedaie,
Volume 27, Issue 1 (3-2016)
Abstract
There are many numerous methods for solving large-scale problems in which some of them are very flexible and efficient in both linear and non-linear cases. League championship algorithm is such algorithm which may be used in the mentioned problems. In the current paper, a new play-off approach will be adapted on league championship algorithm for solving large-scale problems. The proposed algorithm will be used for solving large-scale solving support vector machine model which is a quadratic optimization problem and cannot be solved in a non polynomial time using exact algorithms or optimally using traditional heuristic ones in large scale sizes. The efficiency of the new algorithm will be compared to traditional one in terms of the optimality and time measures. The superiority of the algorithm can be compared versus older version.
Islam Gomaa, Hegazy Zaher, Naglaa Ragaa Saeid, Heba Sayed ,
Volume 34, Issue 1 (3-2023)
Abstract
Researchers in many fields, such as operations research, computer science, AI engineering, and mathematical engineering, extra, are increasingly adopting nature-inspired metaheuristic algorithms because of their simplicity and flexibility. Natural metaheuristic algorithms are based on two essential terms: exploration (diversification) and exploitation (intensification). The success and limitations of these algorithms are reliant on the tuning and control of their parameters. When it comes to tackling real optimization problems, the Gorilla Troop Optimizer (GTO) is an extremely effective algorithm that is inspired by the social behavior of gorilla troops. Three operators of the original GTO algorithm are committed to exploration, and the other two operators are dedicated to exploitation. Even though the superiority of GTO algorithm to several metaheuristic algorithms, it needs to improve the balance between the exploration process and the exploitation process to ensure an accurate estimate of the global optimum. For this reason, a Novel Enhanced version of GTO (NEGTO), which focuses on the correct balance of exploration and exploitation, has been proposed. This paper suggests a novel modification on the original GTO to enhance the exploration process and exploitation process respectively, through introducing a dynamic controlling parameter and improving some equations in the original algorithm based on the new controlling parameter. A computational experiment is conducted on a set of well-known benchmark test functions used to show that NEGTO outperforms the standard GTO and other well-known algorithms in terms of efficiency, effectiveness, and stability. The proposed NEGTO for solving global optimization problems outperforms the original GTO in most unimodal benchmark test functions and most multimodal benchmark test functions, a wider search space and more intensification search of the global optimal solution are the main advantages of the proposed NEGTO.
Rabie Mosaad Rabie, Hegazy Zaher, Naglaa Ragaa Saied, Heba Sayed,
Volume 35, Issue 1 (3-2024)
Abstract
Harris Hawks Optimization (HHO) algorithm, which is a new metaheuristic algorithm that has shown promising results in comparison to other optimization methods. The surprise pounce is a cooperative behavior and chasing style exhibited by Harris' Hawks in nature. To address the limitations of HHO, specifically its susceptibility to local optima and lack of population diversity, a modified version called Modified Harris Hawks Optimization (MHHO) is proposed for solving global optimization problems. A mutation-selection approach is utilized in the proposed Modified Harris Hawks Optimization (MHHO) algorithm. Through systematic experiments conducted on 23 benchmark functions, the results have demonstrated that the MHHO algorithm offers a more reliable solution compared to other established algorithms. The MHHO algorithm exhibits superior performance to the basic HHO, as evidenced by its superior average values and standard deviations. Additionally, it achieves the smallest average values among other algorithms while also improving the convergence speed. The experiments demonstrate competitive results compared to other meta-heuristic algorithms, which provide evidence that MHHO outperforms others in terms of optimization performance.