Search published articles


Showing 2 results for Location-Allocation

Seyyed-Mahdi Hosseini-Motlagh, Sara Cheraghi, Mohammadreza Ghatreh Samani,
Volume 27, Issue 4 (12-2016)
Abstract

The eternal need for humans' blood as a critical commodity makes the healthcare systems attempt to provide efficient blood supply chains (BSCs) by which the requirements are satisfied at the maximum level. To have an efficient supply of blood, an appropriate planning for blood supply chain is a challenge which requires more attention. In this paper, we address a mixed integer linear programming model for blood supply chain network design (BSCND) with the need for making both strategic and tactical decisions throughout a multiple planning periods. A robust programming approach is devised to deal with inherent randomness in parameters data of the model. To illustrate the usefulness of the model as well as its solution approach, it is tested into a set of numerical examples, and the sensitivity analyses are conducted. Finally, we employ two criteria: the mean and standard deviation of constraint violations under a number of random realizations to evaluate the performance of both the proposed robust and deterministic models. The results imply the domination of robust approach over the deterministic one.


Mehdi Seifbarghy, Mehri Nasrabadi,
Volume 34, Issue 3 (9-2023)
Abstract

One of the most key parts of a health system is the blood supply chain whose design is challenging due to the perishability of blood. In this research, an optimization model for multi-product blood supply chain network design is presented by considering blood deterioration. We consider a four-echelon blood supply chain that consists of blood donation centers, blood processing centers, blood products storage centers and hospitals as the user of the blood products. The locations of blood processing centers and blood products storage centers should be determined. Furthermore, considering different levels of technologies for blood processing, the suitable level for each opened center should be determined. In addition, different types of vehicle are also considered for blood transfer between different levels of the network. The objective is minimizing the total logistical costs including the costs of opening and running the blood processing centers and blood product storage centers and blood products transfer costs between different levels of the supply chain. Finally, we apply the given model to a real case study in Iranian blood supply chain, and sensitivity analysis is performed on some parameters. In the end, some managerial insights are given


Page 1 from 1