Search published articles


Showing 3 results for K-Means Algorithm

M. Yaghini, N. Ghazanfari,
Volume 21, Issue 2 (5-2010)
Abstract

  The clustering problem under the criterion of minimum sum of squares is a non-convex and non-linear program, which possesses many locally optimal values, resulting that its solution often falls into these trap and therefore cannot converge to global optima solution. In this paper, an efficient hybrid optimization algorithm is developed for solving this problem, called Tabu-KM. It gathers the optimization property of tabu search and the local search capability of k-means algorithm together. The contribution of proposed algorithm is to produce tabu space for escaping from the trap of local optima and finding better solutions effectively. The Tabu-KM algorithm is tested on several simulated and standard datasets and its performance is compared with k-means, simulated annealing, tabu search, genetic algorithm, and ant colony optimization algorithms. The experimental results on simulated and standard test problems denote the robustness and efficiency of the algorithm and confirm that the proposed method is a suitable choice for solving data clustering problems.


Mohammad Ali Farajian , Shahriar Mohammadi ,
Volume 21, Issue 4 (12-2010)
Abstract

  The unprecedented growth of competition in the banking technology has raised the importance of retaining current customers and acquires new customers so that is important analyzing Customer behavior, which is base on bank databases. Analyzing bank databases for analyzing customer behavior is difficult since bank databases are multi-dimensional, comprised of monthly account records and daily transaction records. Few works have focused on analyzing of bank databases from the viewpoint of customer behavioral analyze. This study presents a new two-stage frame-work of customer behavior analysis that integrated a K-means algorithm and Apriori association rule inducer. The K-means algorithm was used to identify groups of customers based on recency, frequency, monetary behavioral scoring predicators it also divides customers into three major profitable groups of customers. Apriori association rule inducer was used to characterize the groups of customers by creating customer profiles. Identifying customers by a customer behavior analysis model is helpful characteristics of customer and facilitates marketing strategy development .


Naghmeh Khosrowabadi, Rouzbeh Ghousi, Ahmad Makui,
Volume 30, Issue 2 (6-2019)
Abstract

With regard to the industry's development, occupational safety is a key factor in protecting the worker's health, achieving organizational goals and increasing productivity. Therefore, research is needed to investigate the factors affecting occupational safety. This research, based on the information gathered from the paint halts of one of the industrial units of Tehran, uses data mining technique to identify the important factors.Initially with Literature review to 2018, an insight into existing approaches and new ideas earned. Then, with a significant 5600 units of data, the results of the charts, association rules and K-means algorithm were used to extract the latent knowledge with the least error without human intervention from the six-step methodology of Crisp for data mining.The results of charts, association rules, and K-means algorithm for clustering are in a line and have been successful in determining effective factors such as important age groups and education, identifying important events, identifying the halls and finally, the root causes of major events that were the research questions.The results reveal the importance of very young and young age with often diploma education and low experience, in major accidents involving bruising, injury, and torsion, often due to self-unsafe act and unsafe conditions as slipping or collision with things. In addition, the important body members, hands and feet in the color retouching and surface color cabins are more at risk. These results help improve safety strategies. Finally, suggestions for future research were presented.

Page 1 from 1