Search published articles


Showing 7 results for K-Means

M. Yaghini, N. Ghazanfari,
Volume 21, Issue 2 (5-2010)
Abstract

  The clustering problem under the criterion of minimum sum of squares is a non-convex and non-linear program, which possesses many locally optimal values, resulting that its solution often falls into these trap and therefore cannot converge to global optima solution. In this paper, an efficient hybrid optimization algorithm is developed for solving this problem, called Tabu-KM. It gathers the optimization property of tabu search and the local search capability of k-means algorithm together. The contribution of proposed algorithm is to produce tabu space for escaping from the trap of local optima and finding better solutions effectively. The Tabu-KM algorithm is tested on several simulated and standard datasets and its performance is compared with k-means, simulated annealing, tabu search, genetic algorithm, and ant colony optimization algorithms. The experimental results on simulated and standard test problems denote the robustness and efficiency of the algorithm and confirm that the proposed method is a suitable choice for solving data clustering problems.


Mohammad Ali Farajian , Shahriar Mohammadi ,
Volume 21, Issue 4 (12-2010)
Abstract

  The unprecedented growth of competition in the banking technology has raised the importance of retaining current customers and acquires new customers so that is important analyzing Customer behavior, which is base on bank databases. Analyzing bank databases for analyzing customer behavior is difficult since bank databases are multi-dimensional, comprised of monthly account records and daily transaction records. Few works have focused on analyzing of bank databases from the viewpoint of customer behavioral analyze. This study presents a new two-stage frame-work of customer behavior analysis that integrated a K-means algorithm and Apriori association rule inducer. The K-means algorithm was used to identify groups of customers based on recency, frequency, monetary behavioral scoring predicators it also divides customers into three major profitable groups of customers. Apriori association rule inducer was used to characterize the groups of customers by creating customer profiles. Identifying customers by a customer behavior analysis model is helpful characteristics of customer and facilitates marketing strategy development .


Aliakbar Hasani,
Volume 28, Issue 2 (6-2017)
Abstract

In this paper, a comprehensive mathematical model for designing an electric power supply chain network via considering preventive maintenance under risk of network failures is proposed. The risk of capacity disruption of the distribution network is handled via using a two-stage stochastic programming as a framework for modeling the optimization problem. An applied method of planning for the network design and power generation and transmission system via considering failures scenarios, as well as network preventive maintenance schedule, is presented. The aim of the proposed model is to minimize the expected total cost consisting of power plants set-up, power generation and the maintenance activities. The proposed mathematical model is solved by an efficient new accelerated Benders decomposition algorithm. The proposed accelerated Benders decomposition algorithm uses an efficient acceleration mechanism based on the priority method which uses a heuristic algorithm to efficiently cope with computational complexities. A large number of considered scenarios are reduced via using a k-means clustering algorithm to decrease the computational effort for solving the proposed two-stage stochastic programming model. The efficiencies of the proposed model and solution algorithm are examined using data from the Tehran Regional Electric Company. The obtained results indicate that solutions of the stochastic programming are more robust than the obtained solutions provided by a deterministic model.


Ali Nadizadeh,
Volume 28, Issue 3 (9-2017)
Abstract

In this paper, the fuzzy multi-depot vehicle routing problem with simultaneous pickup and delivery (FMDVRP-SPD) is investigated. The FMDVRP-SPD is the problem of allocating customers to several depots, so that the optimal set of routes is determined simultaneously to serve the pickup and the delivery demands of each customer within scattered depots. In the problem, both pickup and delivery demands of customers are fuzzy variables. The objective of FMDVRP-SPD is to minimize the total cost of a distribution system including vehicle traveling cost and vehicle fixed cost. To model the problem, a fuzzy chance-constrained programming model is proposed based on the fuzzy credibility theory. A heuristic algorithm combining K-means clustering algorithm and ant colony optimization is developed for solving the problem. To achieve an appropriate threshold value of parameters of the model, named “vehicle indexes”, and to analyze their influences on the final solution, numerical experiments are carried out.


Naghmeh Khosrowabadi, Rouzbeh Ghousi, Ahmad Makui,
Volume 30, Issue 2 (6-2019)
Abstract

With regard to the industry's development, occupational safety is a key factor in protecting the worker's health, achieving organizational goals and increasing productivity. Therefore, research is needed to investigate the factors affecting occupational safety. This research, based on the information gathered from the paint halts of one of the industrial units of Tehran, uses data mining technique to identify the important factors.Initially with Literature review to 2018, an insight into existing approaches and new ideas earned. Then, with a significant 5600 units of data, the results of the charts, association rules and K-means algorithm were used to extract the latent knowledge with the least error without human intervention from the six-step methodology of Crisp for data mining.The results of charts, association rules, and K-means algorithm for clustering are in a line and have been successful in determining effective factors such as important age groups and education, identifying important events, identifying the halls and finally, the root causes of major events that were the research questions.The results reveal the importance of very young and young age with often diploma education and low experience, in major accidents involving bruising, injury, and torsion, often due to self-unsafe act and unsafe conditions as slipping or collision with things. In addition, the important body members, hands and feet in the color retouching and surface color cabins are more at risk. These results help improve safety strategies. Finally, suggestions for future research were presented.
Sudheer Babu Punuri,
Volume 31, Issue 3 (9-2020)
Abstract

With the ever-increasing request for speed and the increasing number of Cyber Attacks are having fast and accurate skill to provide verification that is convenient, rapid and exact. Even though possible that it is very difficult to fool Image Recognition Skill in this makes it helpful in serving preclude fraud. In this paper, we propose a model for pixel wise operations, which is needed for identification of a location point.  The computer vision is not limited to pixel wise operations. It can be complex and far more complex than image processing. Initially, we take the unstructured Image Segmentation with the help of K-Means Clustering Algorithm is used. Once complete the preprocessing step then extracts the segmented image from the surveillance cameras to identify the expressions and vehicle images. In the raw image from the surveillance camera is the image of a person and vehicle is to classify with the help DWT. Further, the images of the appearances stood also taken with phenomenon called Smart Selfie Click (SSC). These two features are extracted in-order to identify whether the vehicle should be permitted into the campus or not. Thus, verification is possible. These two images are nothing but reliable object extracted for location identification.
Iffan Maflahah, Dian Farida Asfan, Selamet Joko Utomo, Fathor As, Raden Arief Firmansyah,
Volume 35, Issue 4 (12-2024)
Abstract

Madura Island, comprising four regencies, exhibits a diverse array of agricultural resource potential, particularly in paddy, maize, cassava, and soybeans. Althought the Gross Regional Domestic Product assesses economic progress. it inadequately reflects the whole spectrum of potential within each region. A comprehensive observation of this diversity is required to facilitate a more focused development approach. This study aims to employ a hybrid hierarchical clustering method to delineate and classify the geographical regions of Madura Island according to their agricultural potential. K-means clustering, that part of hybrid hierarchical clustering approach was used to achieve aims of research. Number of farmers, land area, and commodities production were variable that used to classify regional based on its potentials. First, hierarchical method was performed to determine the appropriate number of clusters then K-means clustering was applied to classify the regions based on agricultural commodities. The results show effectively determined Madura Island's agricultural potential using the hybrid hierarchical clustering method, which categorizes locations based on characteristics of agricultural production. The research reveals six clusters, each characterized by a unique profile of primary commodity production, including paddy, corn, soybeans, and cassava. Implication of this result is offering insights into regional development of Madura based on agricultural potential.


Page 1 from 1