Search published articles


Showing 3 results for Seyedein

M.r. Modarres Razavi, S.h. Seyedein, P.b. Shahabi , S.h Seyedein,
Volume 17, Issue 3 (IJES 2006)
Abstract

In this paper hemodynamic wall parameters which play an important role to diagnose arterial disease were studied and compared for three different rheology models (Newtonian, Power law and Quemada). Also because of the pulsatile behavior of blood flow the results were obtained for three Womersley numbers which represent the frequencies of the applied pulses. Results show that Quemada model always located between Newtonian and Power law models however its behavior is closer to Power law model. Concerning this behavior and better agreement between Quemada and experimental blood viscosity, it can be expected that Quemada results are more realistic and accurate.


H. Arabi, M.t Salehi, B. Mirzakhani, M.r. Aboutalebi , S.h. Seyedein , S. Khoddam,
Volume 19, Issue 5 (IJES 2008)
Abstract

Hot torsion test (HTT) has extensively been used to analysis and physically model flow behavior and microstructure evolution of materials and alloys during hot deformation processes. In this test, the specimen geometry has a great influence in obtaining reliable test results. In this paper, the interaction of thermal-mechanical conditions and geometry of the HTT specimen was studied. The commercial finite element package ANSYS was utilized for prediction of temperature distribution during reheating treatment and a thermo-rigid viscoplastic FE code, THORAX.FOR, was used to predict thermo-mechanical parameters during the test for API-X70 micro alloyed steel. Simulation results show that no proper geometry and dimension selection result in non uniform temperature within specimen and predicted to have effects on the consequence assessment of material behavior during hot deformation. Recommendations on finding proper specimen geometry for reducing temperature gradient along the gauge part of specimen will be given to create homogeneous temperature as much as possible in order to avoid uncertainty in consequent results of HTT.


A. Jafari, S.h. Seyedein , M. Haghpanahi ,
Volume 19, Issue 7 (IJES 2008)
Abstract

Microcasting Shape-Deposition-Manufacturing is an approach to Solid-Freeform-Fabrication (SFF) process which is a novel method for rapid automated manufacturing of near-net-shape multi-material parts with complex geometries. By this method, objects are made by sequentially depositing molten metal droplets on a substrate and shaping by a CNC tool, layer by layer. Important issues are concerned with remelting dept of substrate, cooling rate and stress build up. In the present study attempts were made to numerically model the heat transfer and phase change within the droplet/substrate, making a better understanding of process performance. Thus, making a brief literature review, a 2-D transient heat transfer Finite Element Analysis was carried out by the use of ANSYS multiphysics, in which solidification is handled using apparent capacity method. Verification was done by available experimental data in the open literature to ensure model predictions. The model was run under various process parameters and obtained results presented in the form of temperature fields, solidification profiles, cooling curves and remelting history curves. Solidification profile studies predict a columnar dendritic solidified structure in the vertical orientation which was in agreement with metallographic sections published earlier. Parametric studied were also carried out under different boundary conditions, initial temperature of the droplet and Substrate temperature. It was concluded that 1) the process is not sensitive to convection/radiation effects from the surface. 2) the main parameter that can control the maximum remelting dept is initial temperature of the droplet. the more drop temperature, the more remelting dept. This parameter also affects cooling rate during solidification. 3) Increasing substrate temperature showed a decreased cooling rate in solid, which can be used to reduce residual stresses, but it had a minor effect on the cooling rates during solidification .



Page 1 from 1