Showing 3 results for Rahmani
Armaghn Shadman, Ali Bozorgi-Amiri, Donya Rahmani,
Volume 28, Issue 2 (IJIEPR 2017)
Abstract
Today, many companies after achieving improvements in manufacturing operations are focused on the improvement of distribution systems and have long been a strong tendency to optimize the distribution network in order to reduce logistics costs that the debate has become challenging. Improve the flow of materials, an activity considered essential to increase customer satisfaction. In this study, we benefit cross docking method for effective control of cargo flow to reduce inventory and improve customer satisfaction. Also every supply chain is faced with risks that threaten its ability to work effectively. Many of these risks are not in control but can cause great disruption and costs for the supply chain process. In this study we are looking for a model to collect and deliver the demands for the limited capacity vehicle in terms of disruption risk finally presented a compromised planning process. In fact, we propose a framework which can consider all the problems on the crisis situation for decision-making in these conditions, by preparing a mathematical model and software gams for the following situation in a case study. In the first step, the results presented in mode of a two-level planning then the problem expressed in form of a multi-objective optimization model and the results was explained.
Seyed Mohammad Ghadirpour, Donya Rahmani, Ghorbanali Moslemipour,
Volume 31, Issue 2 (IJIEPR 2020)
Abstract
It is indispensable that any manufacturing system is consistent with potential changes such as fluctuations in demand. The uncertainty also makes it more essential. Routing Flexibility (RF) is one of the necessities to any modern manufacturing system such as Flexible Manufacturing System (FMS). This paper suggests three mixed integer nonlinear programming models for the Unequal–Area Stochastic Dynamic Facility Layout Problems (UA–SDFLPs) by considering the Routing Flexibility. The models are proposed when the independent demands follow the random variable with the Poisson, Exponential, and Normal distributions. To validation of the proposed models, many small-sized test problems has solved that derived from a real case in literature. The large-sized test problems are solved by the Genetic Algorithm (GA) at a reasonable computational time. The obtained results indicate that the discussed models for the UA–SDFLPs are valid and the managers can take these models to the manufacturing floor to adapt to the potential changes in today's competitive market.
Hana Catur Wahyuni, Rahmania Sri Untari, Rima Azzara, Marco Tieman, Diva Kurnianingtyas,
Volume 35, Issue 4 (IJIEPR 2024)
Abstract
This research discusses the application of the Failure Mode and Effect Analysis (FMEA) method in designing a blockchain system for mitigating food safety and halal risks in the beef supply chain. The complexity of the meat supply chain involving various parties increasing the risk of contamination and changes in the halal status of the meat. This research aims to identify food safety and halal risks, prioritise the risks, and design blockchain-based mitigation solutions. Blockchain was chosen for its advantages in providing high transparency and accountability, enabling real-time tracking at every stage of the supply chain. The research results show that most of the risks in the meat supply chain fall into the low category, but there are some critical medium risks, especially related to the slaughtering process. The proposed blockchain design includes product traceability features, halal certification, temperature monitoring, and smart contracts to ensure automatic validation of food safety and halal compliance. The implementation of this blockchain is expected to increase consumer trust in meat products, reduce the risk of contamination, and strengthen accountability throughout the meat supply chain.