Showing 32 results for R.
H. Yarjiabadi, M. H. Shojaeefard, A.r. Noorpoor, H.yarjiabadi, , M. Habibian , A.r. Noorpoor ,
Volume 17, Issue 3 (IJES 2006)
Abstract
The hydrocyclone has a very important roll in industrial separation. The consideration of its behavior is very important for design. In this investigation, behavior of water flow and particles trajectory inside a hydrocyclone has been considered by means of numerical and experimental methods, and results have been compared together. To have a numerical simulation, a CFD software was used, and for modeling flow the RNG k – model applied. Finally, the effect of particle size on hydrocyclone performance has been studied. It was found that the grade efficiency and number of particle that exit from underflow of the hydrocyclone is increased when bigger particles is used.
A series of experiments has been carried out in a laboratory with a hydrocyclone. Comparison shows that, there is a good agreement between the CFD models and experimental result.
M. M. Shokrieh, R. Rafiee ,
Volume 17, Issue 3 (IJES 2006)
Abstract
The main goal of this research is to extract the full mechanical properties of stitch biax and triax composite materials which are necessary for finite element analysis, based on limited available experimental data and without performing full static characterization tests. Utilized experimental data are limited to elastic modulus of two 0o and 45o directions. Using presented technique and aforementioned data, mechanical properties of unidirectional fabrics of biax and triax are obtained and consequently mechanical properties of biax and triax composites are calculated. Evaluation of the results proved proper performance of the technique in this research.
M.r. Modarres Razavi, S.h. Seyedein, P.b. Shahabi , S.h Seyedein,
Volume 17, Issue 3 (IJES 2006)
Abstract
In this paper hemodynamic wall parameters which play an important role to diagnose arterial disease were studied and compared for three different rheology models (Newtonian, Power law and Quemada). Also because of the pulsatile behavior of blood flow the results were obtained for three Womersley numbers which represent the frequencies of the applied pulses. Results show that Quemada model always located between Newtonian and Power law models however its behavior is closer to Power law model. Concerning this behavior and better agreement between Quemada and experimental blood viscosity, it can be expected that Quemada results are more realistic and accurate.
M.r. Alirezaee, S.a Mir-Hassani,
Volume 17, Issue 4 (IJES 2006)
Abstract
In the evaluation of non-efficient units by Data Envelopment Analysis (DEA) referenced Decision Making Units (DMU’s) have an important role. Unfortunately DMU’s with extra ordinary output can lead to a monopoly in a reference set, the fact called abnormality due to the outliers' data. In this paper, we introduce a DEA model for evaluating DMU’s under this circumstance. The layer model can result in a ranking for DMU’s and obtain an improving strategy leading to a better layer.
M. Nadjafikhah, H. R. Salimi Moghaddam ,
Volume 17, Issue 4 (IJES 2006)
Abstract
In this article, we generalize the concept of the Lie algebra of vector fields to the set of smooth sections of a T-bundle which is by definition a canonical generalization of the concept of a tangent bundle. We define a Lie bracket multiplication on this set so that it becomes a Lie algebra. In the particular case of tangent bundles this Lie algebra coincides with the Lie algebra of vector fields.
M. Nadjafikhah , A.r. Forough ,
Volume 18, Issue 1 (International Journal of Engineering 2007)
Abstract
Abstract : Let be a 2nd order ODE. By Cartan equivalence method, we will study the local equivalence problem under the transformations group of time-fixed coordinates. We are going to solve this problem by an applicable method which has been recognized by R. Gardner, and classify them.
R. Farnoosh, B. Zarpak ,
Volume 19, Issue 1 (International Journal of Engineering 2008)
Abstract
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm.
In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact, a new numerically method was introduced for finding the maximum a posterior estimation by using EM-algorithm and Gaussians mixture distribution. In this algorithm, we were made a sequence of priors, posteriors were made and then converged to a posterior probability that is called the reference posterior probability. Maximum a posterior estimated can determine by the reference posterior probability which can make labeled image. This labeled image shows our segmented image with reduced noises. We presented this method in several experiments.
R. Tavakkoli-Moghaddam, M. Aryanezhad, H. Kazemipoor , A. Salehipour ,
Volume 19, Issue 1 (International Journal of Engineering 2008)
Abstract
Abstract : A tandem automated guided vehicle (AGV) system deals with grouping workstations into some non-overlapping zones , and assigning exactly one AGV to each zone. This paper presents a new non-linear integer mathematical model to group n machines into N loops that minimizes both inter and intra-loop flows simultaneously. Due to computational difficulties of exact methods in solving our proposed model, a threshold accepting (TA) algorithm is proposed. To show its efficiency, a number of instances generated randomly are solved by this proposed TA and then compared with the LINGO solver package employing the branch-and-bound (B/B) method. The related computational results show that our proposed TA dominates the exact algorithm when the size of instances grows.
H. Tavallaee , R. Varmazyar ,
Volume 19, Issue 2 (International Journal of Engineering 2008)
Abstract
Abstract: Let be a commutative ring and be a unitary module. We define a semiprime submodule of a module and consider various properties of it. Also we define semi-radical of a submodule of a module and give a number of its properties. We define modules which satisfy the semi-radical formula and present the existence of such a module.
J. Fathikalajahi, M. Baniadam , R. Rahimpour ,
Volume 19, Issue 3 (International Journal of Engineering 2008)
Abstract
An equation-oriented approach was developed for steady state flowsheeting of a commercial methanol plant. The loop consists of fixed bed reactor, flash separator, preheater, coolers, and compressor. For steady sate flowsheeting of the plant mathematical model of reactor and other units are needed. Reactor used in loop is a Lurgi type and its configuration is rather complex. Previously reactor and flash separator are modeled as two important units of plant. The model is based on mass and energy balances in each equipment and utilizing some auxiliary equations such as rate of reaction and thermodynamics model for activity coefficients of liquid. In order to validate the mathematical model for the synthesis loop, some simulation data were performed using operating conditions and characteristics of the commercial plant. The good agreement between the steady state simulation results and the plant data shows the validity of the model.
H.r. Khakdaman, M. Abedinzadegan Abdi, H.a. Ghadirian, A.t. Zoghi,
Volume 19, Issue 3 (International Journal of Engineering 2008)
Abstract
Abstract: The use of mixed amine system in gas treating processes is increasing today. For natural gas sweetening purposes, mixed amines are typically mixtures of MDEA and DEA or MEA that enhance CO2 removal while retaining desirable characteristics of MDEA such as reduced corrosion problems and low heats of reaction. In this work, a process simulator was used to predict the performance of an Iranian gas sweetening plant with a sour gas feed containing 6.41% CO2 and 3.85% H2S on molar basis. Various mixtures of diethanolamine (DEA) and Methyl diethanolamine (MDEA) were used to investigate the potential for an increase in plant capacity. It was noticed that the process simulator is quite capable in predicting the existing plant performance and can potentially guide in selecting the optimum blend composition. It was also noticed that a substantial increase in plant capacity is quite possible by just adding MDEA to the existing solvent and keeping the solvent flow rate and stripper reboiler heat duty. In another word, it is possible to increase the plant capacity from 293 to 357 MMSCFD using a mixed amine system.
M. Jahir Bin Alam, M.a. Ansery, R.k Chowdhuary, J. Uddin Ahmed, S. Islam , S. Rahman ,
Volume 19, Issue 3 (International Journal of Engineering 2008)
Abstract
Abstract: Sylhet is the northeastern region of Bangladesh and probability of earthquake in Sylhet is higher than other areas of this zone. Among 27 wards, Ward no. 14 is one of the important largest Wards in Sylhet city and a densely populated one. It was clear from the survey works, 42.8% buildings are belongs to Building with RCC frame 54.03% buildings are Masonry buildings. Another interesting finding is 325 houses fall in the category of Houses with resident 1-10. The occurrence of an earthquake of PGA value 0.9g on ward no. 14 causes massive loss of lives and damage to buildings. Depending on the time of the day 147 to 603 people may be killed due to structural collapse and the buildings of worth approximately TK.32.00 core may be damaged.
K. Shahanaghi, V.r. Ghezavati,
Volume 19, Issue 4 (IJIE 2008)
Abstract
In this paper, we present the stochastic version of Maximal Covering Location Problem which optimizes both location and allocation decisions, concurrently. It’s assumed that traveling time between customers and distribution centers (DCs) is uncertain and described by normal distribution function and if this time is less than coverage time, the customer can be allocated to DC. In classical models, traveling time between customers and facilities is assumed to be in a deterministic way and a customer is assumed to be covered completely if located within the critical coverage of the facility and not covered at all outside of the critical coverage. Indeed, solutions obtained are so sensitive to the determined traveling time. Therefore, we consider covering or not covering for customers in a probabilistic way and not certain which yields more flexibility and practicability for results and model. Considering this assumption, we maximize the total expected demand which is covered. To solve such a stochastic nonlinear model efficiently, simulation and genetic algorithm are integrated to produce a hybrid intelligent algorithm. Finally, some numerical examples are presented to illustrate the effectiveness of the proposed algorithm.
R. Tavakolimoghadam, M. Vasei,
Volume 19, Issue 4 (IJIE 2008)
Abstract
In this paper, a single machine sequencing problem is considered in order to find the sequence of jobs minimizing the sum of the maximum earliness and tardiness with idle times (n/1/I/ETmax). Due to the time complexity function, this sequencing problem belongs to a class of NP-hard ones. Thus, a special design of a simulated annealing (SA) method is applied to solve such a hard problem. To compare the associated results, a branch-and-bound (B&B) method is designed and the upper/lower limits are also introduced in this method. To show the effectiveness of these methods, a number of different types of problems are generated and then solved. Based on the results of the test problems, the proposed SA has a small error, and computational time for achieving the best result is very small.
R. Sadeghian, G.r. Jalali-Naini, J. Sadjadi, N. Hamidi Fard ,
Volume 19, Issue 4 (IJIE 2008)
Abstract
In this paper Semi-Markov models are used to forecast the triple dimensions of next earthquake occurrences. Each earthquake can be investigated in three dimensions including temporal, spatial and magnitude. Semi-Markov models can be used for earthquake forecasting in each arbitrary area and each area can be divided into several zones. In Semi-Markov models each zone can be considered as a state of proposed Semi-Markov model. At first proposed Semi-Markov model is explained to forecast the three mentioned dimensions of next earthquake occurrences. Next, a zoning method is introduced and several algorithms for the validation of the proposed method are also described to obtain the errors of this method.
H. Arabi, M.t Salehi, B. Mirzakhani, M.r. Aboutalebi , S.h. Seyedein , S. Khoddam,
Volume 19, Issue 5 (IJES 2008)
Abstract
Hot torsion test (HTT) has extensively been used to analysis and physically model flow behavior and microstructure evolution of materials and alloys during hot deformation processes. In this test, the specimen geometry has a great influence in obtaining reliable test results. In this paper, the interaction of thermal-mechanical conditions and geometry of the HTT specimen was studied. The commercial finite element package ANSYS was utilized for prediction of temperature distribution during reheating treatment and a thermo-rigid viscoplastic FE code, THORAX.FOR, was used to predict thermo-mechanical parameters during the test for API-X70 micro alloyed steel. Simulation results show that no proper geometry and dimension selection result in non uniform temperature within specimen and predicted to have effects on the consequence assessment of material behavior during hot deformation. Recommendations on finding proper specimen geometry for reducing temperature gradient along the gauge part of specimen will be given to create homogeneous temperature as much as possible in order to avoid uncertainty in consequent results of HTT.
Gh. Rahimi , Ar. Davoodinik ,
Volume 19, Issue 7 (IJES 2008)
Abstract
The intention of this study is the analysis of thermal behavior of functionally graded beam (FGB). The distribution of material properties is imitated exponential function. For thermal loading the steady state of heat conduction with exponentially and hyperbolic variations through the thickness of FGB, is considered. With comparing of thermal behavior of both isotropic beam and FGB, it is appea red that the quality of temperature distribution plays very important part in thermal resultant distribution of stresses and strains for FGB. So that, for detecting the particular thermal behavior of FGB, the function of heat distribution must be same as function of material properties distribution. In addition, In the case of exponential distribution of heat with no mechanical loads, in spite of the fact that the bending is accrued, the neutral surface does not come into existence.
Hamed. R. Tareghian , Madjid Salari,
Volume 20, Issue 3 (IJIEPR 2009)
Abstract
The dynamic nature of projects and the fact that they are carried out in changing environments, justify the need for their periodic monitoring and control. Collection of information about the performance of projects at control points costs money. The corrective actions that may need to be taken to bring the project in line with the plan also costs money. On the other hand, penalties are usually imposed when due to “no monitoring” policies projects are delivered later than expected. Thence, this paper addresses two fundamental questions in this regard. First question concerns the optimal frequency of control during the life cycle of a project. The second question concerns the optimal timing of control points. Our solution methodology consists of a simulation-optimization model that optimizes the timing of control points using the attraction-repulsion mechanisms borrowed from the electromagnetism theory. A mathematical model is also used to optimally expedite the remaining part of the project when possible delays are to be compensated.
S. J Sadjadi , Mir.b.gh. Aryanezhad , H.a. Sadeghi ,
Volume 20, Issue 3 (IJIEPR 2009)
Abstract
We present an improved implementation of the Wagner-Whitin algorithm for economic lot-sizing problems based on the planning-horizon theorem and the Economic- Part-Period concept. The proposed method of this paper reduces the burden of the computations significantly in two different cases. We first assume there is no backlogging and inventory holding and set-up costs are fixed. The second model of this paper considers WWA when backlogging, inventory holding and set-up costs cannot be fixed. The preliminary results also indicate that the execution time for the proposed method is approximately linear in the number of periods in the planning-horizon .
M. Ebrahimi, R. Farnoosh,
Volume 20, Issue 4 (IJIEPR 2010)
Abstract
This paper is intended to provide a numerical algorithm based on random sampling for solving the linear Volterra integral equations of the second kind. This method is a Monte Carlo (MC) method based on the simulation of a continuous Markov chain. To illustrate the usefulness of this technique we apply it to a test problem. Numerical results are performed in order to show the efficiency and accuracy of the present method.