Ashwin S. Chatpalliwar, Vishwas S. Deshpande, Jayant P. Modak, Nileshsingh V. Thakur,
Volume 24, Issue 3 (IJIEPR 2013)
Abstract
This paper mainly focuses the study and analysis of the existing contributions related to the Biodiesel production. It, firstly, discuss the key issues related contributions which include chemical process, reactor designing, plantation, blending and applications. Next, it summarizes the analysis of the other prominent contributions related to process model, design, production, cost, optimization, feasibility, safety, effects, challenges and future of the Biodiesel. It also presents the discussion on the open issues in Biodiesel. Secondly, an approach is suggested for the design of the Biodiesel manufacturing plant in view of cost and capacity. The suggested approach is based on the mathematical model. This paper provides the brief study of Biodiesel production and plant design and it can be helpful to the beginners in the domain of renewable energy research.
Mr Sachin Mahakalkar, Dr Vivek Tatwawadi, Mr Jayant Giri, Dr Jayant Modak,
Volume 26, Issue 1 (IJIEPR 2015)
Abstract
Response surface methodology (RSM) is a statistical method useful in the modeling and analysis of problems in which the response variable receives the influence of several independent variables, in order to determine which are the conditions under which should operate these variables to optimize a corrugated box production process. The purpose of this research is to create response surface models through regression on experimental data which has been reduced using DA to obtain optimal processing conditions. Studies carried out for corrugated sheet box manufacturing industries having man machine system revealed the contribution of many independent parameters on cycle time. The independent parameters include anthropometric data of workers, personal data, machine specification, workplace parameters, product specification, environmental conditions and mechanical properties of corrugated sheet. Their effect on response parameter cycle time is totally unknown. The developed model was simulated and optimized with the aid of MATLAB R2011a and the computed value for cycle time is obtained and compared with experimental value. The results obtained showed that the correlation R, adjusted R2 and RMS error were valid.