Search published articles


Showing 3 results for Maleki

Farnad Nasirzadeh, Hamid Reza Maleki, Mostafa Khanzadi, Hojjat Mianabadi,
Volume 24, Issue 1 (IJIEPR 2013)
Abstract

Implementation of the risk management concepts into construction practice may enhance the performance of project by taking appropriate response actions against identified risks. This research proposes a multi-criteria group decision making approach for the evaluation of different alternative response scenarios. To take into account the uncertainties inherent in evaluation process, fuzzy logic is integrated into the revaluation process. To evaluate alternative response scenarios, first the collective group weight of each criterion is calculated considering opinions of a group consisted of five experts. As each expert has its own ideas, attitudes, knowledge and personalities, different experts will give their preferences in different ways. Fuzzy preference relations are used to unify the opinions of different experts. After computation of collective weights, the best alternative response scenario is selected by the use of proposed fuzzy group decision making methodology which aggregates opinions of different experts. To evaluate the performance of the proposed methodology, it is implemented in a real project and the best alternative responses scenario is selected for one of the identified risks.
Ali Salmasnia, Mohammad Reza Maleki, Esmaeil Safikhani,
Volume 34, Issue 2 (IJIEPR 2023)
Abstract

In some applications, the number of quality characteristics is larger than the number of observations within subgroups. Common multivariate control charts to monitor the variability of such high-dimensional processes are unsuitable because the sample covariance matrix is not positive semi-definite and invertible. Moreover, the impact of gauge imprecision on detection capability of multivariate control charts under high-dimensional setting has been clearly neglected in the literature. To overcome these shortcomings, this paper develops a ridge penalized likelihood ratio chart for Phase II monitoring of high-dimensional process in the presence of measurement system errors. The developed control chart departures from the assumption of sparse variability shifts in which the assignable cause can only affects a few elements of the covariance matrix. Then, to compensate for the adverse impact of gauge impression, the developed chart is extended by employing multiple measurements on each sampled item. Simulation studies are carried out to study the impact of imprecise measurements on detectability of the developed monitoring scheme under different shift patterns. The results show that the gauge inability negatively affects the run-length distribution of the developed control chart. It is also found that the extended chart under multiple measurements strategy can effectively reduce the error impact.
Mahdi Rezaei, Ali Salmasnia, Mohammad Reza Maleki,
Volume 34, Issue 3 (IJIEPR 2023)
Abstract

This article develops an integrated model of transmitting strategies and operational activities to enhance the efficiency of supply chain management. As the second objective, this paper aims to improve supply chain performance management (SCPM) by employing proper decision-making approaches. The proposed model optimizes the performance indicator based on SCOR metrics. A process-based method is utilized for high-level decisions, while a mathematical programming method is proposed for low-level decisions. The suggested operational model takes some major supply chain properties such as multiple suppliers, multiple plants, multiple materials, and multiple produced items over several time periods into account. To solve the operational multi-objective optimization model, a goal programming approach is applied. The computational results are explained in terms of a numerical example, and a sensitivity analysis is performed to investigate how the performance of the supply chain is influenced by strategic scenario planning.
 

Page 1 from 1