Search published articles

Showing 2 results for Khalili

Rassoul Noorossana, Somayeh Khalili,
Volume 32, Issue 1 (IJIEPR 2021)

In the last few decades, profile monitoring in univariate and multivariate environment has drawn a considerable attention in the area of statistical process control. In multivariate profile monitoring, it is required to relate more than one response variable to one or more explanatory variables. In this paper, the multivariate multiple linear profile monitoring problem is addressed under the assumption of existing autocorrelation among observations. Multivariate linear mixed model (MLMM) is proposed to account for the autocorrelation between profiles. Then two control charts in addition to a combined method are applied to monitor the profiles in phase II. Finally, the performance of the presented method is assessed in terms of average run length (ARL). The simulation results demonstrate that the proposed control charts have appropriate performance in signaling out-of-control conditions.
Shima Khalilinezhad, Hamed Fazlollahtabar, Behrouz Minaei-Bidgoli, Hamid Eslami Nosratabadi,
Volume 32, Issue 3 (IJIEPR 2021)

One of the challenges that banks are faced with is recognition and differentiation of customers and providing customized services to them. Recognizing valuable customers based on their field of business is one of the key objectives and competitive advantages of banks. To determine guild patterns of the valuable customers based on their transactions and value of each guild for the bank, the banking tools on which the customer’s transactions take place need to be surveyed. Using deeper insights into the value of each guild, banks can provide customized services to ensure satisfaction and loyalty of their customers. Study population was comprised of the holders of point of sale (POS) devices in different guilds and the transactions done through the devices in an 18-months period. Datamining methods were employed on the set of data and the results were analyzed. Data preparation and analysis were done though online analytical processing (OLAP) method and to find guild patterns of the bank customers, value of each customer was determined using recency, frequency, monetary (RFM) method and clustered based on K-means algorithm. Finally, specifications of customers in the most valuable cluster were analyzed based on their guilds and the rules were extracted from the model developed using C5 decision tree algorithm.

Page 1 from 1