Showing 12 results for Haji
M. Haji-Ramazanali , M. Shafiee ,
Volume 18, Issue 2 (International Journal of Engineering 2007)
Abstract
M. and M.
Abstract: Existence and uniqueness of solution for singular 2-D systems depends on regularity condition. Simple regularity implies regularity and under this assumption, the generalized wave model (GWM) is introduced to cast singular 2-D system of equations as a family of non-singular 1-D models with variable structure.These index dependent models, along with a set of boundary constraint relations, forming the admissible subspace, led to the recursive solution of the GWM.
Rasoul Haji, Mohammadmohsen Moarefdoost, Seyed Babak Ebrahimi,
Volume 21, Issue 4 (IJIEPR 2010)
Abstract
This paper aims to evaluate inventory cost of a Two-echelon serial supply chain system under vendor managed inventory program with stochastic demand, and examine the effect of environmental factors on the cost of overall system. For this purpose, we consider a two-echelon serial supply chain with a manufacturer and a retailer. Under Vendor managed inventory program, the decision on inventory levels are made by manufacturer centrally. In this paper, we assume that the manufacturer monitors inventory levels at the retailer location and replenishes retailer's stock under (r, n, q) policy moreover, the manufacturer follows make-to-order strategy in order to respond retailer's orders. In the other word, when the inventory position at the retailer reaches reorder point, r, the manufacturer initiates production of Q=nq units with finite production rate, p. The manufacturer replenishes the retailer's stock with replenishment frequency n, and the complete batch of q units to the retailer during the production time. We develop a renewal reward model for the case of Poisson demand, and drive the mathematical formula of the long run average total inventory cost of system under VMI. Then, by using Monte Carlo simulation, we examine the effect of environmental factors on the cost of overall system under VMI .
Reza Morovatdar , Abdolah Aghaie , Simak Haji Yakhchali ,
Volume 22, Issue 1 (IJIEPR 2011)
Abstract
In order to have better insight of project characteristics, different kinds of fuzzy analysis for project networks have been recently proposed, most of which consider activities duration as the main and only source of imprecision and vagueness, but as it is usually experienced in real projects, the structure of the network is also subject to changes. In this paper we consider three types of imprecision namely activity duration, activity existence and precedence relation existence which make our general fuzzy project network. Subsequently, a corrected forward recursion is proposed for analysis of this network. Since the convexity and normalization of traditional fuzzy numbers are not satisfied, some corrected algebraic operations are also presented. Employing the proposed method for a real project reveals that our method results in more applicable and realistic times for activities and project makespan in comparison to
Classic fuzzy PERT.
Maghsoud Amiri, Mehdi Seif Barghy, Laaya Olfat, Seyed Hossein Razavi Hajiagha ,
Volume 23, Issue 1 (IJIEPR 2012)
Abstract
Inventory control is one of the most important issues in supply chain management. In this paper, a three-echelon production, distribution, inventory system composed of one producer, a set of wholesalers and retailers is considered. Costumers' demands can be approximated by a normal distribution and the inventory policy is a kind of continuous review (R, Q). In this paper, a model based on standard cost structure of inventory systems is developed and a heuristic algorithm is designed to optimize the developed model. The application of model is examined in a series of designed experiments that are compared with simulation results. These comparisons verify the validity of the model. Regarding to real complexities in three-echelon systems analysis, the proposed method can have a wide application in practical problems with the same considerations and assumptions. In addition, this method can be used to approximate those systems that follow a Poisson demand.
Mostafa Hajiaghaei-Keshteli, Majid Aminnayeri,
Volume 23, Issue 4 (IJIEPR 2012)
Abstract
In this paper, the cost function for a three-echelon inventory system with two warehouses is derived. Transportation times are constant and retailers face independent Poisson demand. Replenishments are one-for-one. The lead time of a retailer is determined not only by the constant transportation time but also by the random delay incurred due to the availability of stock at the warehouses. We consider two warehouses in the second echelon which may leads to having more delays which were incurred in the warehouses and facing different behaviors of independent Poisson demands. Because the replenishment policy is base stock, the obtained function can also be used in different ordering policies to compute the inventory holding and shortage costs.
Seyed Hossein Razavi Hajiagha, Shide Sadat Hashemi, Hannan Amoozad Mahdiraji,
Volume 25, Issue 3 (IJIEPR 2014)
Abstract
Data envelopment analysis operates as a tool for appraising the relative efficiency of a set of homogenous decision making units. This methodology is applied widely in different contexts. Regarding to its logic, DEA allows each DMU to take its optimal weight in comparison with other DMUs while a similar condition is considered for other units. This feature is a bilabial characteristic which optimizes the performance of units in one hand. This flexibility on the other hand threats the comparability of different units because different weighting schemes are used for different DMUs. This paper proposes a unified model for determination of a common set of weights to calculate DMUs efficiency. This model is developed based on a multi objective fractional linear programming model that considers the original DEA's results as ideal solution and seeks a set of common weights that rank the DMUs and increase the model's discrimination power. Comparison of the proposed method with some of the previously presented models has shown its advantages as a DMUs ranking model.
Mohammad Khalilzadeh, Alborz Hajikhani, Seyed Jafar Sadjadi,
Volume 28, Issue 1 (IJIEPR 2017)
Abstract
The present paper aims to propose a fuzzy multi-objective model to allocate order to supplier in uncertainty conditions and for multi-period, multi-source, and multi-product problems at two levels with wastages considerations. The cost including the purchase, transportation, and ordering costs, timely delivering or deference shipment quality or wastages which are amongst major quality aspects, partial coverage of suppliers in respect of distance and finally, suppliers weights which make the products orders more realistic are considered as the measures to evaluate the suppliers in the proposed model. Supplier's weights in the fifth objective function are obtained using fuzzy TOPSIS technique. Coverage and wastes parameters in this model are considered as random triangular fuzzy number. Multi-objective imperial competitive optimization (MOICA) algorithm has been used to solve the model,. To demonstrate applicability of MOICA, we applied non-dominated sorting genetic algorithm (NSGA-II). Taguchi technique is executed to tune the parameters of both algorithms and results are analyzed using quantitative criteria and performing parametric.
Amir Mohammad Fathollahi Fard, Mostafa Hajiaghaei-Keshteli,
Volume 29, Issue 2 (IJIEPR 2018)
Abstract
Nowadays, several methods in production management mainly focus on the different partners of supply chain management. In real world, the capacity of planes is limited. In addition, the recent decade has seen the rapid development of controlling the uncertainty in the production scheduling configurations along with proposing novel solution approaches. This paper proposes a new mathematical model via strong recent meta-heuristics planning. This study firstly develops and coordinates the integrated air transportation and production scheduling problem with time windows and due date time in Fuzzy environment to minimize the total cost. Since the problem is NP-hard, we use four meta-heuristics along with some new procedures and operators to solve the problem. The algorithms are divided into two groups: traditional and recent ones. Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) as traditional algorithms, also Keshtel Algorithm (KA) and Virus Colony Search (VCS) as the recent ones are utilized in this study. In addition, by using Taguchi experimental design, the algorithm parameters are tuned. Besides, to study the behavior of the algorithms, different problem sizes are generated and the results are compared and discussed.
Mohsen Khezeli, Esmaeil Najafi, Mohammad Haji Molana, Masoud Seidi,
Volume 32, Issue 2 (IJIEPR 2021)
Abstract
One of the most important fields of logistic network is transportation network design that has an important effect on strategic decisions in supply chain management. It has recently attracted the attention of many researchers. In this paper, a multi-stage and multi-product logistic network design is considered.
This paper presents a hybrid approach based on simulation and optimization (Simulation based optimization), the model is formulated and presented in three stages. At first, the practical production capacity of each product is calculated using the Overall Equipment Effectiveness (OEE) index, in the second stage, the optimization of loading schedules is simulated. The layout of the loading equipment, the number of equipment per line, the time of each step of the loading process, the resources used by each equipment were simulated, and the output of the model determines the maximum number of loaded vehicles in each period. Finally, a multi-objective model is presented to optimize the transportation time and cost of products. A mixed integer nonlinear programming (MINLP) model is formulated in such a way as to minimize transportation costs and maximize the use of time on the planning horizon. We have used Arena simulation software to solve the second stage of the problem, the results of which will be explained. It is also used GAMS software to solve the final stage of the model and optimize the transporting cost and find the optimal solutions. Several test problems were generated and it showed that the proposed algorithm could find good solutions in reasonable time spans.
Mohsen Khezeli, Esmaeil Najafi, Mohammad Haji Molana, Masoud Seidi,
Volume 33, Issue 2 (IJIEPR 2022)
Abstract
Nowadays, supply chain management (SCM) is an interesting problem that has attracted the attention of many researchers. Transportation network design is one of the most important fields of SCM. In this paper, a logistics network design is considered to optimize the total cost and increase the network stability and resiliency. First, a mixed integer nonlinear programming model (MINLP) is formulated to minimize the transportation time and transportation cost of products. The proposed model consists of two main stages.
One is a normal stage that minimizes the transportation and holding costs, all manufacturers are also assumed to be healthy and in service. In this stage, the quantity of customer demand met by each manufacturer is eventually determined.
The second is the resilience stage. A method is presented by creating an information network in this supply chain for achieving the resilient and sustainable production and distribution chain that, if some manufacturers break down or stop production, Using the Restarting and load sharing scenarios in the reactive approach to increase resilience with accepting the costs associated with it in the supply network and return to the original state in the shortest possible time, the consequences of accidental failure and shutdown of production units are managed.
Two capacities are also provided for each manufacturer
- Normal capacity to meet the producer's own demand
- Load sharing capacity, Determine the empty capacity and increase the capacity of alternative units to meet the out-of-service units demand
In order to solve the model, we used GAMS & Matlab software to find the optimal solutions. A hybrid priority-based Non-dominated Sorting Genetic Algorithms (NSGA-II) and Sub-population Genetic Algorithm (SPGA- II) is provided in two phases to find the optimal solutions. The solutions are represented with a priority matrix and an Allocated vector. To compare the efficiency of two algorithms several criteria are used such as NPS, CS and HV. Several Sample problems are generated and solved that show the Sub-population Genetic Algorithm (SPGA- II) can find good solutions in a reasonable time limit.
Fatemeh Hajisoltani, Mehdi Seifbarghy, Davar Pishva,
Volume 34, Issue 1 (IJIEPR 2023)
Abstract
The main objective of this research is effective planning as well as greener production and distribution of mineral products in supply chain network. Through a case study in cement industry, it considers the design of the mining supply chain network including several factories with a number of production lines and multiple distribution centers. It leaves part of the transportation operation to contractor companies so as to enable the core company to better focus on its products’ quality and also create job opportunities to local people. It employs a multi-period and multi-product mixed integer linear programming model to both maximize the profit of the factory as well as minimize its carbon dioxide gas emissions which are released during cement production and transportation process. Due to the uncertainty of its cost parameters, fuzzy logic has been used for the modeling and solved via a novel fuzzy multi-choice goal programming approach. Sensitivity analysis has also been done on some key parameters. Comparing results of the model with those from the single-objective models, shows that the model has good efficiency and can be used by managers of mining industries such as cement. Although leaving part of the transportation operations to contractor companies increases the number of vehicles used by the contractor companies, its associated decrease in the number of required factory vehicles, improves both objectives of the model. This should be considered by the managers since on top of profit maximization, it can help them build an eco-friendly image. Mining industries generally generate significant amount of pollutions and companies that pay attention to different dimensions of their social responsibilities can remain stable in the competitive market.
Mohd Hafizul Ismail, Nurashikin Saaludin, Basyirah Che Mat, Siti Nur Dina Haji Mohd Ali,
Volume 34, Issue 1 (IJIEPR 2023)
Abstract
The COVID-19 pandemic forced Malaysian Higher Education Institutions to pursue online and distance learning. This study aimed to gain insight into the pre-university students’ acceptance and intention to use the Microsoft Teams (MS Teams) application for online learning platforms during the pandemic. This group of students was chosen because they had just finished high school and their transition from the school system to the university system with online learning will pose many difficulties. The theoretical framework for this study was developed using the Technology Acceptance Model (TAM) with additional facilitating conditions and computer self-efficacy as the external elements. The participants were 180 pre-university students from Universiti Kuala Lumpur Malaysian Institute of Information Technology who had experience using MS Teams during their first semester. With SPSS, the predictive factors on the acceptance of students toward online learning have been explained. The findings also indicate that the proposed TAM-based scale successfully explained the factors predicting intention to use MS Teams during the pandemic. The findings assist researchers and practitioners in developing a more comprehensive view of pre-university students’ acceptance and intention to use MS Teams. Finally, several recommendations have been made, including the implications and limitations of the study at the end of this paper to reference future research.