Search published articles


Showing 2 results for Ghannadpour

Seyed Farid Ghannadpour, Ali Rezahoseini, Siamak Noori, Morteza Yazdani,
Volume 30, Issue 1 (IJIEPR 2019)
Abstract

In order to manage a project with integrity, a cohesive communication is needed between its various sections; possible risks, identification of stakeholders, providing the necessary resources on time and managing their availability, focusing on the approved budget and satisfactory quality the project can be successfully done. In the recent year BIM has as new aspects to engineering and architecture, and has become an accepted platform for planning and executing construction projects and contributed to integration of various fields and. also, project management standards, such as PMBOK, have come to aid construction managers. Through the basic capacities of BIM, and questionnaires according to aspects of PMBOK, the present study tries to identify the superior effects of BIM on project management. Moreover, it seeks to recognize the most significant aspects of BIM application on project management. by employing the FANP-AVIKOR decision making method to prioritize the parameters of the collected results, the study’s conclusion will indicate that almost all of PMBOK aspects equally benefit from using BIM; in addition, it will show that 3D BIM capacities, including clash detection, plan correction, are superior in comparison with 6D BIM and 7D BIM capacities.
Simin Dargahi Darabad, Maryam Izadbakhsh, Seyed Farid Ghannadpour, Siamak Noori, Mohammad Mahdavi Mazdeh,
Volume 35, Issue 1 (IJIEPR 2024)
Abstract

The construction supply chain is presently the focus of considerable interest among numerous project-related businesses. Strong project management is essential for the effective completion of a project, since restricted budgets and time constraints are considered for each project. The research uses multi-objective linear programming to create a mathematical model of the building supply chain. The primary aims of the present investigation are to limit the expenses associated with logistics and to diminish the release of greenhouse gases caused by transportation. Given the reality of managing several projects concurrently, the model provided comprises a network of projects. Following the completion of each project, an inspection is arranged to assess its level of success. Estimating the costs of a project relies on several variables. In reality, there are always uncertainties highlighted in several studies about the uncertainty of cost and time parameters. This research incorporates many characteristics concurrently to simulate real-world settings and address the issue of uncertainty. The expression of uncertainty for all costs, activity length, inspection, supplier capacity, and resource demand are represented by triangular fuzzy numbers. Ultimately, the precision of the model's performance has been verified using a numerical illustration.

Page 1 from 1