Search published articles


Showing 2 results for Behnamian

Javad Behnamian, A. Panahi,
Volume 34, Issue 2 (IJIEPR 2023)
Abstract

Given the increasing human need for health systems and the costs of using such systems, the problem of optimizing health-related systems has attracted the attention of many researchers. One of the most critical cases in this area is the operating room scheduling. Much of the cost of health systems is related to operating room costs. Therefore, planning and scheduling of operating rooms can play an essential role in increasing the efficiency of health systems as well as reducing costs. Given the uncertain factors involved in such matters, attention to uncertainty in this problem is one of the most critical factors in the results. In this study, the problem of the daily scheduling of the operating room with uncertain surgical time was investigated. For minimizing overhead costs and maximizing the number of surgeries to reduce patients' waiting time, after introducing a mathematical model, a chance-constrained programming approach is used to deal with its uncertainty. In this study, also, a harmony search algorithm is proposed to solve the model because of its NP-Hardness. By performing the numerical analysis and comparing the presented algorithm result with a genetic algorithm, the results show that the proposed algorithm has a better performance.


Malihe Masoumi, Javad Behnamian,
Volume 35, Issue 1 (IJIEPR 2024)
Abstract

Due to the many applications of the travelling salesman problem, solving this problem has been considered by many researchers. One of the subsets of the travelling salesman problem is the metric travelling salesman problem in which a triangular inequality is observed. This is a crucial problem in combinatorial optimization as it is used as a standard problem as a basis for proving complexity or providing solutions to other problems in this class. The solution is used usually in logistics, manufacturing and other areas for cost minimization. Since this is an NP-hard problem, heuristic and meta-heuristic algorithms seek near-optimal solutions in polynomial time as numerical solutions. For this purpose, in this paper, a heuristic algorithm based on the minimum spanning tree is presented to solve this problem. Then, by generating 20 instances, the efficiency of the proposed algorithm was compared with one of the most famous algorithms for solving the travelling salesman problem, namely the nearest neighbour algorithm and the ant colony optimization algorithm. The results show that the proposed algorithm has good convergence to the optimal solution. In general, the proposed algorithm has a balance between runtime and the solution found compared to the other two algorithms. So the nearest neighbour algorithm has a very good runtime to reach the solution but did not have the necessary convergence to the optimal solution, and vice versa, the ant colony algorithm converges very well to the optimal solution, but, its runtime solution is very longer than the proposed algorithm.
 

Page 1 from 1