Mahdi Bashiri, Mahdyeh Shiri, Mohammad Hasan Bakhtiarifar,
Volume 26, Issue 2 (IJIEPR 2015)
Abstract
There are many real problems in which multiple responses should be optimized simultaneously by setting of process variables. One of the common approaches for optimization of multi-response problems is desirability function. In most real cases, there is a correlation structure between responses so ignoring the correlation may lead to mistake results. Hence, in this paper a robust approach based on desirability function is extended to optimize multiple correlated responses. Main contribution of the current study is the synthesis of ideas considering correlation structure in robust optimization through defining joint confidence interval and desirability function method. A genetic algorithm was employed to solve the introduced problem. Effectiveness of the proposed method is illustrated through some computational examples and some comparisons with previous methods were performed to show applicability of the proposed approach. Also, a sensitivity analysis was provided to show relationship of correlation and robustness in these approaches.