Search published articles


Showing 4 results for Babaei

Kamran Shahanaghi, Hamid Babaei , Arash Bakhsha,
Volume 20, Issue 1 (IJIEPR 2009)
Abstract

In this paper we focus on a continuously deteriorating two units series equipment which its failure can not be measured by cost criterion. For these types of systems avoiding failure during the actual operation of the system is extremely important. In this paper we determine inspection periods and maintenance policy in such a way that failure probability is limited to a pre-specified value and then optimum policy and inspection period are obtained to minimize long-run cost per time unit. The inspection periods and maintenance policy are found in two phases. Failure probability is limited to a pre-specified value In the first phase, and in the second phase optimum maintenance thresholds and inspection periods are obtained in such a way that minimize long-run expected.
S. G. Jalali Naini , M. B. Aryanezhad, A. Jabbarzadeh , H. Babaei ,
Volume 20, Issue 3 (IJIEPR 2009)
Abstract

This paper studies a maintenance policy for a system composed of two components, which are subject to continuous deterioration and consequently stochastic failure. The failure of each component results in the failure of the system. The components are inspected periodically and their deterioration degrees are monitored. The components can be maintained using different maintenance actions (repair or replacement) with different costs. Using stochastic regenerative properties of the system, a stochastic model is developed in order to analyze the deterioration process and a novel approach is presented that simultaneously determines the time between two successive inspection periods and the appropriate maintenance action for each of the components based on the observed degrees of deterioration. This approach considers different criteria like reliability and long-run expected cost of the system. A numerical example is provided in order to illustrate the implementation of the proposed approach.
Rassoul Noorossana, Abbas Saghaei, Hamidreza Izadbakhsh, Omid Aghababaei,
Volume 24, Issue 2 (IJIEPR 2013)
Abstract

In certain statistical process control applications, quality of a process or product can be characterized by a function commonly referred to as profile. Some of the potential applications of profile monitoring are cases where quality characteristic of interest is modelled using binary,multinomial or ordinal variables. In this paper, profiles with multinomial response are studied. For this purpose, multinomial logit regression (MLR) is considered as the basis.Then, the MLR is converted to Poisson GLM with log link. Two methods including Multivariate exponentially weighted moving average (MEWMA) statistics, and Likelihood ratio test (LRT) statistics are proposed to monitor MLR profiles in phase II. Performances of these three methods are evaluated by average run length criterion (ARL). A case study from alloy fasteners manufacturing process is used to illustrate the implementation of the proposed approach. Results indicate satisfactory performance for the proposed method.
Motahare Gitinavard, Parviz Fattahi, Seyed Mohammad Hassan Hosseini, Mahsa Babaei,
Volume 33, Issue 4 (IJIEPR 2022)
Abstract

This paper aims to introduce a joint optimization approach for maintenance, quality, and buffer stock policies in single machine production systems based on a P control chart. The main idea is to find the optimal values of the preventive maintenance period, the buffer stock size, the sample size, the sampling interval, and the control limits simultaneously, such that the expected total cost per time unit is minimized. In the considered system, we have a fixed rate of production and stochastic machine breakdowns which directly affect the quality of the product. Periodic preventive maintenance (PM) is performed to reduce out-of-control states. In addition, corrective maintenance is required after finding each out-of-control state. A buffer is used to reduce production disturbances caused by machine stops. To ensure that demand is met during a preventive and corrective maintenance operation. All features of three sub-optimization problems including maintenance, quality control, and buffer stock policies are formulated and the proposed integrated approach is defined and modeled mathematically. In addition, an iterative numerical optimization procedure is developed to provide the optimal values for the decision variables. The proposed procedure provides the optimal values of the preventive maintenance period, the buffer stock size, the sample size, the sampling interval, and the control chart limits simultaneously, in a way that the total cost per time unit is minimized. Moreover, some sensitivity analyses are carried out to identify the key effective parameters.

Page 1 from 1