Search published articles

Showing 3 results for Azimi

Moharram Habibnejad Korayem, Arastoo Azimi, Ali Mohammad Shafei,
Volume 24, Issue 3 (IJIEPR 2013)

In this research the sensitivity analysis of the geometric parameters such as: length, thickness and width of a single link flexible manipulator on maximum deflection (MD) of the end effector and vibration energy (VE) of that point are conducted. The equation of motion of the system is developed based on Gibbs-Appel (G-A) formulation. Also for modeling the elastic property of the system the assumption of assumed modes method (AMM) is applied. In this study, two theories are used to obtain the end-point MD and VE of the end effector. Firstly, the assumption of Timoshenko beam theory (TBT) has been applied to consider the effects of shear and rotational inertia. After that, Euler-Bernoulli beam theory (EBBT) is used. Then Sobol’s sensitivity analysis method is applied to determine how VE and end-point MD is influenced by those geometric parameters. At the end of the research, results of two mentioned theories are compared.
Parham Azimi, Naeim Azouji,
Volume 28, Issue 4 (IJIEPR 2017)

In this paper a novel modelling and solving method has been developed to address the so-called resource constrained project scheduling problem (RCPSP) where project tasks have multiple modes and also the preemption of activities are allowed. To solve this NP-hard problem, a new general optimization via simulation (OvS) approach has been developed which is the main contribution of the current research. In this approach, the mathematical model of the main problem is relaxed and solved then the optimum solutions were used in the corresponding simulation model to produce several random feasible solutions for the main problem. Finally, the most promising solutions were selected as the initial population of a genetic Algorithm (GA). To test the efficiency of the problem, several test problems were solved by the proposed approach and according to the results, the proposed concept has a very good performance to solve such a complex combinatoral problem. Also, the concept could be easily applied for other similar combinatorics. 

Parham Azimi, Shahed Sholekar,
Volume 32, Issue 1 (IJIEPR 2021)

According to the real projects’ data, activity durations are affected by numerous parameters. In this research, we have developed a multi-resource multi objective multi-mode resource constrained scheduling problem with stochastic durations where the mean and the standard deviation of activity durations are related to the mode in which each activity is performed. The objective functions of model were to minimize the net present value and makespan of the project. A simulation-based optimization approach was used to handle the problem with several stochastic events. This feature helped us to find several solutions quickly while there was no need to take simplification assumptions. To test the efficiency of the proposed algorithm, several test problems were taken from the PSPLIB directory and solved. The results show the efficiency of the proposed algorithm both in quality of the solutions and the speed.

Page 1 from 1