Showing 141 results for Ali
Reza Morovatdar , Abdolah Aghaie , Simak Haji Yakhchali ,
Volume 22, Issue 1 (IJIEPR 2011)
Abstract
In order to have better insight of project characteristics, different kinds of fuzzy analysis for project networks have been recently proposed, most of which consider activities duration as the main and only source of imprecision and vagueness, but as it is usually experienced in real projects, the structure of the network is also subject to changes. In this paper we consider three types of imprecision namely activity duration, activity existence and precedence relation existence which make our general fuzzy project network. Subsequently, a corrected forward recursion is proposed for analysis of this network. Since the convexity and normalization of traditional fuzzy numbers are not satisfied, some corrected algebraic operations are also presented. Employing the proposed method for a real project reveals that our method results in more applicable and realistic times for activities and project makespan in comparison to
Classic fuzzy PERT.
Meysam Zareiee, Abbas Dideban, Ali A. Orouji ,
Volume 22, Issue 2 (IJIEPR 2011)
Abstract
Discrete event system, Supervisory control, Petri Net, Constraint |
This paper presents a method to manage the time in a manufacturing system for obtaining an optimized model. The system in this paper is modeled by the timed Petri net and the optimization is performed based on the structural properties of Petri nets. In a system there are some states which are called forbidden states and the system must be avoided from entering them. In Petri nets, this avoidance can be performed by using control places. But in a timed Petri net, using control places may lead to decreasing the speed of systems. This problem will be shown on a manufacturing system. So, a method will be proposed for increasing the speed of the system without using control places .
M. Miranbeigi, A.a. Jalali, A. Miranbeigi ,
Volume 22, Issue 3 (IJIEPR 2011)
Abstract
supply chain network receding horizon control demand move suppression term |
Supply chain networks are interconnection and dynamics of a demand network. Example subsystems, referred to as stages, include raw materials, distributors of the raw materials, manufacturers, distributors of the manufactured products, retailers, and customers. The main objectives of the control strategy for the supply chain network can be summarized as follows: (i) maximize customer satisfaction, and (ii) minimize supply chain operating costs. In this paper, we applied receding horizon control (RHC) method to a set of large scale supply chains of realistic size under demand disturbances adaptively. Also in order to increase the robustness of the system , we added a move suppression term to cost function .
Saeid Moslehpour, Kouroush Jenab, Srikar Valiveti,
Volume 23, Issue 1 (IJIEPR 2012)
Abstract
As functional integration has increased in hand-held consumer devices features such as Global Positioning System (GPS) receivers have been embedded in increasingly more devices in recent years. For example, the train positioning system based on GPS provides an integrated positioning solution which can be used in many rail applications without a cost intensive infrastructure. The network built in the GPS receiver has the advantage of determining the exact location and time of the train. The objective of this research was to develop a system which accepts the location from the GPS receiver mounted on the train and extracts its local time. This is implemented using Altera SOPC builder in the NIOS – II environment. Nios II is a 32 bit soft-core embedded-processor architecture designed specifically for the Altera family of FPGAs. The signal received using the GPS receiver is given to the DE2 board through the UART port and converted it in to local time and displayed on the NIOS II console. A working system was developed, which accepts the location from the GPS receiver and extracted its local time.
Gholam Reza Jalali Naieni, Ahmad Makui, Rouzbeh Ghousi,
Volume 23, Issue 1 (IJIEPR 2012)
Abstract
Fuzzy Logic is one of the concepts that has created different scientific attitudes by entering into various professional fields nowadays and in some cases has made remarkable effects on the results of the practical researches. However, the existence of stochastic and uncertain situations in risk and accident field, affects the possibility of the forecasting and preventing the occurrence of the accident and the undesired results of it.
In this paper, fuzzy approach is used for risk evaluating and forecasting, in accidents caused by working with vehicles such as lift truck. Basically, by using fuzzy rules in forecasting various accident scenarios, considering all input variables of research problem, the uncertainty space in the research subject is reduced to the possible minimum state and a better capability of accident forecasting is created in comparison to the classic two-valued situations. This new approach helps the senior managers make decisions in risk and accident management with stronger scientific support and more reliably.
, , , ,
Volume 23, Issue 2 (IJIEPR 2012)
Abstract
The ever severe dynamic competitive environment has led to increasing complexity of strategic decision making in giant organizations. Strategy formulation is one of basic processes in achieving long range goals. Since, in ordinary methods considering all factors and their significance in accomplishing individual goals are almost impossible. Here, a new approach based on clustering method is proposed to assist the decision makers in formulating strategies. Having extracted the internal and external factors, after setting long range goals, the factor-goal matrices are generated according to the impact rate of factors on goals. According to created matrices, clusters including goals and factors are formed. By considering individual clusters the strategies are proposed according to the current state of clusters for the organization. By applying this new method the opportunity of considering the impact of all factors and its interactions on goals are not lost. Strategy-factor and strategy-goal matrices are utilized to validate the proposed method. To show the appropriateness and practicality of our approach, particularly in an environment with a large number of interacting goals and factors, we have implemented the approach in Mahmodabad Training Center (MTC) in Iran. The resulting goal-factor, current and dated states of clusters, also, strategy-goal and strategy-factor matrices for model validation and route branch indices for finding out how the organization achieved each goal are reported.
, ,
Volume 23, Issue 2 (IJIEPR 2012)
Abstract
Nowadays, project selection is a vital decision in many organizations. Because competition among research projects in order to gain more budgets and to attain new scientific domain has increased. Due to multiple objectives and budgeting restrictions for academic research projects have led to the use of expert system for decision making by academic and research centers. The existing methods suffer from deficiencies such as solution time inefficiency, ineffective assessment process, and unclear definition of appropriate criteria. In this paper, a fuzzy expert system is developed and improved for decision making in allocating budgets to research projects, by using the analytic network process(ANP). This has led to fewer rules and regulation, faster and more accurate decision-making, fewer calculations, and less system complexity. The rules of the expert system exacted in C# environment, consider all of the conditions and factors affecting the system. We describe the results of proposed model to measure its advantages and compare to existing selection processes for 120 projects. We also discuss the potential of proposed expert system in supporting decision making. The implementation results show that this system is significantly valid in selecting high-priority projects with respect to the known criteria , decision making regarding the determination of the assessment factors, budget allocation, and providing the appropriate initiatives for the improvement of the low-priority projects.
, ,
Volume 23, Issue 2 (IJIEPR 2012)
Abstract
The problem of staff scheduling at a truck hub for loading and stripping of the trucks is an important and difficult problem to optimize the labor efficiency and cost. The trucks enter the hub at different hours a day, in different known time schedules and operating hours. In this paper, we propose a goal programming to maximize the labor efficiency via minimizing the allocation cost. The proposed model of this paper is implemented for a real-world of a case study and the results are analyzed.
Abbas Dideban, Maysam Zareiee, Ali A. Orouji, Hassan Rezaei Soleymanpour ,
Volume 24, Issue 1 (IJIEPR 2013)
Abstract
This paper deals with the problem of forbidden states in discrete event systems modeled by Petri Net. To avoid the forbidden states, some constraints which are called Generalized Mutual Exclusion Constraints can be assigned to them. Enforcing these constraints on the system can be performed using control places. However, when the number of these constraints is large, a large number of control places must be connected to the system which complicates the model of controller. In this paper, the objective is to propose a general method for reducing the number of the mentioned constraints and consequently the number of control places. This method is based on mixing some constraints for obtaining a constraint verifying all of them which is performed using the optimization algorithms. The obtained controller after reducing the number of the control places is maximally permissive.
Ali Shahandeh Nookabadi, Mohammad Reza Yadoolahpour, Soheila Kavosh,
Volume 24, Issue 1 (IJIEPR 2013)
Abstract
Network location models comprise one of the main categories of location models. These models have various applications in regional and urban planning as well as in transportation, distribution, and energy management. In a network location problem, nodes represent demand points and candidate locations to locate the facilities. If the links network is unchangeably determined, the problem will be an FLP (Facility Location Problem). However, if links can be added to the network at a reasonable cost, the problem will then be a combination of facility location and NDP (Network Design Problem) hence, called FLNDP (Facility Location Network Design Problem), a more general variant of FLP. In previous studies of this problem, capacity of facilities was considered to be a constraint while capacity of links was not considered at all. The proposed MIP model considers capacity of facilities and links as decision variables. This approach increases the utilization of facilities and links, and prevents the construction of links and location of facilities with low utilization. Furthermore, facility location cost (link construction cost) in the proposed model is supposed to be a function of the associated facility (link) capacity. Computational experiments as well as sensitivity analyses performed indicate the efficiency of the model.
Alireza Sharafi, Majid Aminnayeri, Amirhossein Amiri, Mohsen Rasouli,
Volume 24, Issue 2 (IJIEPR 2013)
Abstract
Identification of a real time of a change in a process, when an out-of-control signal is present is significant. This may reduce costs of defective products as well as the time of exploring and fixing the cause of defects. Another popular topic in the Statistical Process Control (SPC) is profile monitoring, where knowing the distribution of one or more quality characteristics may not be appropriate for discussing the quality of processes or products. One, rather, uses a relationship between a response variable and one or more explanatory variable for this purpose. In this paper, the concept of Maximum Likelihood Estimator (MLE) applied to estimate of the change point in binary profiles, when the type of change is drift. Simulation studies are provided to evaluate the effectiveness of the change point estimator.
Taha Hosseinhejazi, Majid Ramezani, Mirmehdi Seyyed-Esfahani, Ali Mohammad Kimiagari,
Volume 24, Issue 2 (IJIEPR 2013)
Abstract
control of production processes in an industrial environment needs the correct setting of input factors, so that output products with desirable characteristics will be resulted at minimum cost. Moreover, such systems havetomeetset of qualitycharacteristicstosatisfycustomer requirements.Identifyingthemosteffectivefactorsindesignoftheprocesswhichsupportcontinuousandcontinualimprovement isrecentlydiscussedfromdifferentviewpoints.Inthisstudy, we examined the quality engineering problems in which several characteristics and factors are to be analyzed through a simultaneous equations system. Besides, the several probabilistic covariates can be included to the proposed model. The main purpose of this model is to identify interrelations among exogenous and endogenous variables, which give important insight for systematic improvements of quality. At the end, the proposed approach is described analytically by a numerical example.
Ali Yahyatabar Arabi, Abdolhamid Eshraghnia Jahromi, Mohammad Shabannataj,
Volume 24, Issue 2 (IJIEPR 2013)
Abstract
Redundancy technique is known as a way to enhance the reliability and availability of non-reparable systems, but for repairable systems, another factor is getting prominent called as the number of maintenance resources. In this study, availability optimization of series-parallel systems is modelled by using Markovian process by which the number of maintenance resources is located into the objective model under constraints such as cost, weight, and volume. Due to complexity of the model as nonlinear programming , solving the model by commercial softwares is not possible, and a simple heuristic method called as simulated annealing is applied. Our main contribution in this study is related to the development of a new availability model considering a new decision variable called as the number of maintenance resources. A numerical simulation is solved and the results are shown to demonstrate the effecienct of the method.
Navid Khademi, Afshin Shariat Mohaymany, Jalil Shahi, Mojtaba Rajabi,
Volume 24, Issue 3 (IJIEPR 2013)
Abstract
Most of the researches in the domain of fuzzy number comparisons serve the fuzzy number ordering purpose. For making a comparison between two fuzzy numbers, beyond the determination of their order, it is needed to derive the magnitude of their order. In line with this idea, the concept of inequality is no longer crisp however it becomes fuzzy in the sense of representing partial belonging or degree of membership. In this paper we propose a method for capturing the membership degree of fuzzy inequalities through discretizing the μ-axis into equidistant intervals. It calculates m in the fuzzy inequalities ≤ m and ≥m among two normal fuzzy numbers. In this method, the two μ-axis based discretized fuzzy numbers are compared point by point and at each point the degree of preferences is identified. To show its validity, this method is examined against the essential properties of fuzzy number ordering methods in [Wang, X. and E.E. Kerre, Reasonable properties for the ordering of fuzzy quantities (I). Fuzzy Sets and Systems, 2001. 118(3): p. 375-385.] The result provides promising outcomes that may be useful in the domain fuzzy multi criteria or multi-attribute decision making analysis and also fuzzy mathematical programming with fuzzy inequality constraints.
Moharram Habibnejad Korayem, Arastoo Azimi, Ali Mohammad Shafei,
Volume 24, Issue 3 (IJIEPR 2013)
Abstract
In this research the sensitivity analysis of the geometric parameters such as: length, thickness and width of a single link flexible manipulator on maximum deflection (MD) of the end effector and vibration energy (VE) of that point are conducted. The equation of motion of the system is developed based on Gibbs-Appel (G-A) formulation. Also for modeling the elastic property of the system the assumption of assumed modes method (AMM) is applied. In this study, two theories are used to obtain the end-point MD and VE of the end effector. Firstly, the assumption of Timoshenko beam theory (TBT) has been applied to consider the effects of shear and rotational inertia. After that, Euler-Bernoulli beam theory (EBBT) is used. Then Sobol’s sensitivity analysis method is applied to determine how VE and end-point MD is influenced by those geometric parameters. At the end of the research, results of two mentioned theories are compared.
Mohammadjafar Tarokh, Mahsa Esmaealigookeh,
Volume 24, Issue 4 (IJIEPR 2013)
Abstract
Abstract
Customer Lifetime Value (CLV) is known as an important concept in marketing and management of organizations to increase the captured profitability. Total value that a customer produces during his/her lifetime is named customer lifetime value. The generated value can be calculated through different methods. Each method considers different parameters. Due to the industry, firm, business or product, the parameters of CLV may vary. Companies use CLV to segment customers, analyze churn probability, allocate resources or formulate strategies related to each segment. In this article we review most presented models of calculating CLV. The aim of this survey is to gather CLV formulations of past 3 decades, which include Net Present Value (NPV), Markov chain model, probability model, RFM, survival analysis and so on.
Yahia Zare Mehrjerdi, Tahereh Aliheidary,
Volume 25, Issue 1 (IJIEPR 2014)
Abstract
Job Satisfaction (JS) plays important role as a competitive advantage in organizations especially in helth industry. Recruitment and retention of human resources are persistent problems associated with this field. Most of the researchs have focused on the job satisfaction factors and few of researches have noticed about its effects on productivity. However, little researchs have focused on the factors and effects of job satisfaction simultanosly by system dynamics approaches.In this paper, firstly, analyses the literature relating to system dynamics and job satisfaction in services specially at a hospital clinic and reports the related factors of employee job satisfaction and its effects on productivity. The conflicts and similarities of the researches are discussed and argued. Then a novel procedure for job satisfaction evaluation using (Artificial Neural Networks)ANNs and system dynamics is presented. The proposed procedure is implemented for a large hospital in Iran. The most influencial factors on job satisfaction are chosen by using ANN and three differents dynamics scenarios are built based on ANN's result. . The modelling effort has focused on evaluating the job satisfaction level in terms of key factors which obtain from ANN result such as Pay, Work and Co-Workers at all three scenarios. The study concludes with the analysis of the obtained results. The results show that this model is significantly usfule for job satisfaction evaluation
Keywords: Job Satisfaction, system dynamics, Artificial Neural Network (ANN), healthcar field.
Mohammad Saber Fallah Nezhad, Ali Mostafaeipour,
Volume 25, Issue 1 (IJIEPR 2014)
Abstract
In order to perform Preventive Maintenance (PM), two approaches have evolved in the literature. The traditional approach is based on the use of statistical and reliability analysis of equipment failure. Under statistical-reliability (S-R)-based PM, the objective of achieving the minimum total cost is pursued by establishing fixed PM intervals, which are statistically optimal, at which to replace or overhaul equipments or components. The second approach involves the use of sensor-based monitoring of equipment condition in order to predict occurrence of machine failure. Under condition-based (C-B) PM, intervals between PM works are no longer fixed, but are performed only “when needed”. It is obvious that Condition Based Maintenance (CBM) needs an on-line inspection and monitoring system that causes CBM to be expensive. Whenever this cost is infeasible, we can develop other methods to improve the performance of traditional (S-R)-based PM method. In this research, the concept of Bayesian inference was used. The time between machine failures was observed, and with combining Bayesian Inference with (S-R)-based PM, it is tried to determine the optimal checkpoints. Therefore, this approach will be effective when it is combined with traditional (S-R)-based PM, even if large number of data is gathered.
Maghsoud Amiri, Mohammadreza Sadeghi, Ali Khatami Firoozabadi, Fattah Mikaeili ,
Volume 25, Issue 1 (IJIEPR 2014)
Abstract
The main goal in this paper is to propose an optimization model for determining the structure of a series-parallel system. Regarding the previous studies in series-parallel systems, the main contribution of this study is to expand the redundancy allocation parallel to systems that have repairable components. The considered optimization model has two objectives: maximizing the system mean time to first failure and minimizing the total cost of the system. The main constraints of the model are: maximum number of the components in the system, maximum and minimum number of components in each subsystem and total weight of the system. After establishing the optimization model, a multi objective approach of Imperialist Competitive Algorithm is proposed to solve the model.
Mehdi Alinaghian,
Volume 25, Issue 2 (IIJEPR 2014)
Abstract
periodic vehicle routing problem focuses on establishing a plan of visits to clients over a given time horizon so as to satisfy some service level while optimizing the routes used in each time period. This paper presents a new effective heuristic algorithm based on data mining tools for periodic vehicle routing problem (PVRP). The related results of proposed algorithm are compared with the results obtained by best Heuristics and meta-heuristics algorithms in the literature. Computational results indicate that the algorithm performs competitive in the accuracy and its small amount of solving time point of views.