Search published articles


Showing 31 results for Control

Abbas Dideban, Maysam Zareiee, Ali A. Orouji, Hassan Rezaei Soleymanpour ,
Volume 24, Issue 1 (2-2013)
Abstract

This paper deals with the problem of forbidden states in discrete event systems modeled by Petri Net. To avoid the forbidden states, some constraints which are called Generalized Mutual Exclusion Constraints can be assigned to them. Enforcing these constraints on the system can be performed using control places. However, when the number of these constraints is large, a large number of control places must be connected to the system which complicates the model of controller. In this paper, the objective is to propose a general method for reducing the number of the mentioned constraints and consequently the number of control places. This method is based on mixing some constraints for obtaining a constraint verifying all of them which is performed using the optimization algorithms. The obtained controller after reducing the number of the control places is maximally permissive.
Alireza Sharafi, Majid Aminnayeri, Amirhossein Amiri, Mohsen Rasouli,
Volume 24, Issue 2 (6-2013)
Abstract

Identification of a real time of a change in a process, when an out-of-control signal is present is significant. This may reduce costs of defective products as well as the time of exploring and fixing the cause of defects. Another popular topic in the Statistical Process Control (SPC) is profile monitoring, where knowing the distribution of one or more quality characteristics may not be appropriate for discussing the quality of processes or products. One, rather, uses a relationship between a response variable and one or more explanatory variable for this purpose. In this paper, the concept of Maximum Likelihood Estimator (MLE) applied to estimate of the change point in binary profiles, when the type of change is drift. Simulation studies are provided to evaluate the effectiveness of the change point estimator.
Shervin Asadzadeh , Abdollah Aghaie, Hamid Shahriari ,
Volume 24, Issue 2 (6-2013)
Abstract

Monitoring the reliability of products in both the manufacturing and service processes is of main concern in today’s competitive market. To this end, statistical process control has been widely used to control the reliability-related quality variables. The so-far surveillance schemes have addressed processes with independent quality characteristics. In multistage processes, however, the cascade property must be effectively justified which entails establishing the relationship among quality variables with the purpose of optimal process monitoring. In some cases, measuring the values corresponding to specific covariates is not possible without great financial costs. Subsequently, the unmeasured covariates impose unobserved heterogeneity which decreases the detection power of a control scheme. The complicated picture arises when the presence of a censoring mechanism leads to inaccurate recording of the process response values. Hence, frailty and Cox proportional hazards models are employed and two regression-adjusted monitoring procedures are constructed to effectively account for both the observed and unobserved influential covariates in line with a censoring issue. The simulation-based study reveals that the proposed scheme based on the cumulative sum control chart outperforms its competing procedure with smaller out-of-control average run length values.
Mohammad Saber Fallah Nezhad,
Volume 24, Issue 4 (12-2013)
Abstract

In this research, the decision on belief (DOB) approach was employed to analyze and classify the states of uni-variate quality control systems. The concept of DOB and its application in decision making problems were introduced, and then a methodology for modeling a statistical quality control problem by DOB approach was discussed. For this iterative approach, the belief for a system being out-of-control was updated by taking new observations on a given quality characteristic. This can be performed by using Bayesian rule and prior beliefs. If the beliefs are more than a specific threshold, then the system will be classified as an out-of-control condition. Finally, a numerical example and simulation study were provided for evaluating the performance of the proposed method.
Seyed Mojtaba Jafari Henjani, Valeriy Severin,
Volume 25, Issue 3 (7-2014)
Abstract

The paper is devoted to solution of some problems in nuclear power station generating unit intellectual control systems using genetic algorithms on the basis of control system model development, optimizations methods of their direct quality indices and improved integral quadratic estimates. Some mathematical vector models were obtained for control system multicriterion quality indices with due consideration of stability and quality indices criteria, this increasing the reliability of optimal control system synthesis. Optimal control systems with fuzzy controllers were synthesized for nuclear reactor, steam generator and steam turbine, thus allowing comparison between fuzzy controllers and traditional PID controllers. Mathematical models built for nuclear power station generating unit control systems, including nuclear reactor, steam generator, steam turbine and their control systems interacting under normal operational modes, which permitted to perform parametrical synthesis of system and to study various power unit control laws. On the basis of power unit control system models controllers were synthesized for normal operational modes.
Romina Madani, Amin Ramezani, Mohammad Taghi Madani Beheshti,
Volume 25, Issue 4 (10-2014)
Abstract

Today, companies need to make use of appropriate patterns such as supply chain management system to gain and preserve a position in competitive world-wide market. Supply chain is a large scaled network consists of suppliers, manufacturers, warehouses, retailers and final customers which are in coordination with each other in order to transform products from raw materials into finished goods with optimal placement of inventory within the supply chain and minimizing operating costs in the face of demand fluctuations. Logistics is the management of the flow of goods between the point of origin and the point of consumption. One issue in Logistics management is the presence of possible long delays in goods transportation. In order to handle long delays, there are two possible solutions proposed in this paper. One solution is to use Model Predictive Controllers (MPCs) using orthonormal functions (Laguerre functions) and the other is to change supply chain model in which an integrator is imbedded. To this end, the two mentioned solutions will be implemented on a supply chain with long logistics delays and the results will be compared to classical MPC without using orthonormal basis and augmented model for different type of customer demand (constant, pulse and random demand).
Mohammad Saber Fallah Nezhad, Vida Golbafian, Hasan Rasay, Yusef Shamstabar,
Volume 28, Issue 3 (9-2017)
Abstract

CCC-r control chart is a monitoring technique for high yield processes. It is based on the analysis of the number of inspected items until observing a specific number of defective items.  One of the assumptions in implementing CCC-r chart that has a significant effect on the design of the control chart is that the inspection is perfect. However, in reality, due to the multiple reasons, the inspection is exposed to errors. In this paper, we study the economic-statistical design of CCC-r charts when the inspection is imperfect. Minimization of the average cost per produced item is considered as the objective function. The economic objective function, modified consumer risk, and modified producer risk are simultaneously considered, and then the optimal value of r parameter is selected.


Rassoul Noorossana, Mahnam Najafi,
Volume 28, Issue 4 (11-2017)
Abstract

Change point estimation is as an effective method for identifying the time of a change in production and service processes. In most of the statistical quality control literature, it is usually assumed that the quality characteristic of interest is independently and identically distributed over time. It is obvious that this assumption could be easily violated in practice. In this paper, we use maximum likelihood estimation method to estimate when a step change has occurred in a high yield process by allowing a serial correlation between observations. Monte Carlo simulation is used as a vehicle to evaluate performance of the proposed method. Results indicate satisfactory performance for the proposed method.


Babak Shirazi,
Volume 28, Issue 4 (11-2017)
Abstract

Resource planning in large-scale construction projects has been a complicated management issue requiring mechanisms to facilitate decision making for managers. In the present study, a computer-aided simulation model is developed based on concurrent control of resources and revenue/expenditure. The proposed method responds to the demand of resource management and scheduling in shell material embankment activities regarding large-scale dam projects of Iran. The model develops a methodology for concurrent management of resources and revenue/expenditure estimation of dam's projects. This real-time control allows managers to simulate several scenarios and adopt the capability of complicated working policies. Results validation shows that the proposed model will assist project managers as a decision support tool in cost-efficient executive policymaking on resource configuration.
 
Mohammad Mehdi Dehdar, Mustafa Jahangoshai Rezaee, Marzieh Zarinbal, Hamidreza Izadbakhsh,
Volume 29, Issue 4 (12-2018)
Abstract

Human-based quality control reduces the accuracy of this process. Also, the speed of decision making in some industries is very important. For removing these limitations in human-based quality control, in this paper, the design of an expert system for automatic and intelligent quality control is investigated. In fact, using an intelligent system, the accuracy in quality control is increased. It requires the knowledge of experts in quality control and design of expert systems based on the knowledge and information provided by human and equipment. For this purpose, Fuzzy Inference System (FIS) and Image Processing approach are integrated. In this expert system, the input information is the images of the products and the results of processing on images for quality control are as output. At first, they may be noisy images; the pre-processing is done and then a fuzzy system is used to be processed. In this fuzzy system, according to the images, the rules are designed to extract the specific features that are required. At second, after the required attributes are extracted, the control chart is used in terms of quality. Furthermore, the empirical case study of copper rods industry is presented to show the abilities of the proposed approach.
 
Mohammad Sarvar Masouleh, Amir Azizi,
Volume 30, Issue 4 (12-2019)
Abstract

The present research aims at investigating feasible improvements by determining optimal number of stations and required workforce using a simulation system, with the ultimate goal of reaching optimal throughput while respecting the problem constraints in an attempt to achieve maximum feasible performance in terms of production rate. For this purpose, similar research works were investigated by reviewing the relevant pieces of the literature on simulation model, car signoff station, and techniques for optimizing the station, and the model of the car signoff unit was designed using data gathering tools, existing documents, and actual observations. Subsequently, the model was validated by means of descriptive statistics and analysis of variance (ANOVA). Furthermore, available data was analyzed using ARENA and SPSS software tools. In a next step, potential improvements of the unit were identified and the model was evaluated accordingly. The results indicated that some 80% of the existing problems could be addressed by appropriately planning for human resources, on-time provision of the required material at reworking units, and minimization of transportation at the stations that contributed the most to the working queue. Thus, the waiting time per station could be minimized while increasing the production rate.
Mahdi Imanian, Aazam Ghassemi, Mahdi Karbasian,
Volume 31, Issue 1 (3-2020)
Abstract

This work used two methods for Monitoring and control of autocorrelated processes based on time series modeling. The first method was the simultaneous monitoring of common and assignable causes. This method included applying five steps of data gathering, normality test, autocorrelation test, model selection and control chart selection on all non-stationary process observations. The second method was a novel one for the separate monitoring and control of common and assignable causes. In this method, the process was divided into the parts with and without assignable causes.
The first method was greatly non-stationary due to not separating common and assignable causes. This method also implied that the common causes were hidden in the process. The novel method for the separate monitoring of common and assignable causes could turn the process into a stationary one, leading to identifying, monitoring, and controlling common causes without any interference from the assignable causes. The results showed that, unlike the first method, the second method could be very sensitive to the common causes; it could, therefore, suitably monitor, identify and control both assignable and common causes.
The current work was aimed to use control charts to monitor and control the bootomhole pressure during the drilling operation.
 
Louiza Dehyadegari, Somayeh Khajehasani,
Volume 32, Issue 1 (1-2021)
Abstract

In this paper, a multivariable control of a two-link robot is performed by fuzzy-sliding mode control. Robots on the one hand have complex dynamics due to nonlinearity, uncertainty and indeterminacy resulting from friction and other factors. The uncertainty and nonlinearity of the governing equations more and more necessitates the use of these two types of controllers in spite of a two-link and multivariable dynamic system. In this paper simulation, a fuzzy system is used in two parts. In the first part, a fuzzy system is used to approximate the uncertainty of the robot arm dynamic model in the control law and in the second part the nonlinear term of the signal function is replaced by an adaptive neuro-fuzzy controller to produce appropriate s and to track the output properly. The comparison of simulation results suggests that the intelligent method based on the proposed adaptive neuro-fuzzy control has better performance in tracking reference signal with slight tracking error and higher accuracy compared to sliding mode method.
Sundaramali G., Santhosh Raj K., Anirudh S., Mahadharsan R., Senthilkumaran Selvaraj,
Volume 32, Issue 3 (9-2021)
Abstract

One of the goals of the manufacturing industry in the globalisation era is to reduce defects. Due to a variety of factors, the products manufactured in the industry may not be defect-free. Six Sigma is one of the most effective methods for reducing defects. This paper focuses on implementing Six Sigma in the automobile industry's stator motor shaft assembly. The high decibel noise produced by the stator motor is regarded as a rejected piece. Six Sigma focuses on continuous improvement and aids in process optimization by identifying the source of the defect. In the Six Sigma process, the problem is measured and analysed using various tools and techniques. Before beginning this case study, its impact on the company in terms of internal and external customer cost savings is assessed. This case study was discovered to be in a high-impact area. The issue was discovered during the Core and Shaft pressing process. Further research leads to dimensional tolerance, which reduces the defect percentage from 16.5 percent to 0.5 percent.
Samrad Jafarian-Namin, Mohammad Saber Fallahnezhad, Reza Tavakkoli-Moghaddam, Ali Salmasnia, Mohammad Hossein Abooei,
Volume 32, Issue 4 (12-2021)
Abstract

In recent years, it has been proven that integrating statistical process control, maintenance policy, and production can bring more benefits for the entire production systems. In the literature of triple-concept integrated models, it has generally been assumed that the observations are independent. However, the existence of correlated structures in some practical applications put the traditional control charts in trouble. The mixed EWMA-CUSUM (MEC) control chart and the ARMA control chart are effective tools to monitor the mean of autocorrelated processes. This paper proposes an integrated model subject to some constraints for determining the decision variables of triple concepts in the presence of autocorrelated data. Three types of autocorrelated processes are investigated to study their effects on the results. Moreover, the results of the MEC and ARMA charts are compared. Due to the complexity of the model, a particle swarm optimization (PSO) algorithm is applied to select optimal decision variables. An industrial example and extensive comparisons are provided
Bhagwan Kumar Mishra, Anupam Das,
Volume 32, Issue 4 (12-2021)
Abstract

The article highlights the development of a Non-Gaussian Process Monitoring Strategy for a Steel Billet Manufacturing Unit (SBMU). The non-Gaussian monitoring strategy being proposed is based on Modified Independent Component Analysis (ICA) which is a variant of the widely employed conventional ICA. The Independent Components(IC) being extracted by modified ICA technique are ordered as per the variance explained akin to that of Principle Component Analysis (PCA). Whereas in conventional ICA the variance explained by the ICs are not known and thereby causes hindrance in the selection of influential ICs for eventual building of the nominal model for the ensuing monitoring strategy. Hotelling T2 control chart based on modified ICA scores was used for detection of fault(s) whose control limit was estimated via Bootstrap procedure owing to the non-Gaussian distribution of the underlying data. The Diagnosis of the Detected Fault(s) was carried out by employment of Fault Diagnostic Statistic. The Diagnosis of the Fault(s) involved determination of the contribution of the responsible Process and Feedstock characteristics. The non-Gaussian strategy thus devised was able to correctly detect and satisfactory diagnose the detected fault(s)
Motahare Gitinavard, Parviz Fattahi, Seyed Mohammad Hassan Hosseini, Mahsa Babaei,
Volume 33, Issue 4 (12-2022)
Abstract

This paper aims to introduce a joint optimization approach for maintenance, quality, and buffer stock policies in single machine production systems based on a P control chart. The main idea is to find the optimal values of the preventive maintenance period, the buffer stock size, the sample size, the sampling interval, and the control limits simultaneously, such that the expected total cost per time unit is minimized. In the considered system, we have a fixed rate of production and stochastic machine breakdowns which directly affect the quality of the product. Periodic preventive maintenance (PM) is performed to reduce out-of-control states. In addition, corrective maintenance is required after finding each out-of-control state. A buffer is used to reduce production disturbances caused by machine stops. To ensure that demand is met during a preventive and corrective maintenance operation. All features of three sub-optimization problems including maintenance, quality control, and buffer stock policies are formulated and the proposed integrated approach is defined and modeled mathematically. In addition, an iterative numerical optimization procedure is developed to provide the optimal values for the decision variables. The proposed procedure provides the optimal values of the preventive maintenance period, the buffer stock size, the sample size, the sampling interval, and the control chart limits simultaneously, in a way that the total cost per time unit is minimized. Moreover, some sensitivity analyses are carried out to identify the key effective parameters.
Hamed Salehi Mourkani, Anwar Mahmoodi, Isa Nakhai Kamalabadi,
Volume 35, Issue 3 (9-2024)
Abstract

This research investigated the problem of joint inventory control and pricing for non-instantaneous deteriorating products; while, the quantity dependent trade credit is allowed. It was observed here that the buyer order amount is equal or more than the amount specified by the seller. The Shortage was not permitted in the system. It was aimed in present study to find a procedure for achieving the optimal selling price and replenish cycle and to be able to maximize the system's profit. To do so, first, the system's total profit function was derived. Then, the uniqueness of the optimal replenishment cycle for a given price was proved. Next, the concavity of the total profit function concerning the price was revealed, depending on the trade credit policy. Thereafter, an algorithm was provided to fulfill the optimal solution and eventually a dual-purpose numerical analysis was carried out both to show the model performance and to evaluate the sensitivity of the main parameters.
 
Emad Hajjat, Majed Alzoubi, Leqaa Al-Othman, Lu'ay Wedyan, Osama Hayajneh,
Volume 35, Issue 3 (9-2024)
Abstract

This study examines the role of forensic accounting in enhancing financial transparency and reducing fraud in Jordanian institutions. Using a mixed-method approach, data were collected from 150 respondents including chartered accountants, auditors, financial managers. through a structured questionnaire. The findings reveal that forensic accounting significantly contributes to fraud prevention by supporting government investigations, providing courtroom testimony), and developing financial management systems. Additionally, forensic accountants play a crucial role in preparing key reports for government activities. The correlation analysis shows strong interdependencies between forensic accounting’s roles in arbitration and fraud detection. While most hypotheses were confirmed, challenges were noted in applying forensic accounting within the public sector. The study concludes by recommending that policymakers strengthen the integration of forensic accounting into Jordan's financial regulatory framework to enhance its effectiveness, particularly in the public sector. This research highlights the vital role of forensic accounting in maintaining financial integrity and provides a foundation for future studies.
 
Mohsen Nourizadeh, Moharram Habibnejad Korayem, Hami Tourajizadeh,
Volume 36, Issue 1 (3-2025)
Abstract

The purpose of this paper is to optimal control a dual-stage cable robot in a predefined path and to determine the maximum load-carrying capacity of this robot as a tower crane. Also, to expand the workspace of the robot two stages are employed. Today, cable robots are extensively used in load handling. Positive cable tension and collision-free cable control are the most important challenges of this type of robot. The high ratio of transposable loads to weight makes these robots very attractive for use as tower cranes. Dynamic Load Carrying Capacity (DLCC) is the maximum load that can be carried along a predefined path without violating the actuators and allowable accuracy constraints. State-Dependent Riccati Equation (SDRE) is employed to control the end-effector within the path to achieve the maximum DLCC. This approach is chosen since it can optimize the required motors' torque which consequently leads us to the maximum DLCC. In addition, the constraint of cables’ collision together is also checked along the predetermined path using the non-interference algorithm. The correctness of modeling is verified by comparing the results with previous research and the efficiency of the proposed optimal controlling strategy toward increasing the DLCC is investigated by conducting some comparative simulations. it is shown that the proposed cable robot by the aid of the designed optimal controller can increase the load carrying capacity successfully along any desired path using the allowable amount of motors' torque.


Page 1 from 2    
First
Previous
1