M. Mohammadi, R. Tavakkoli-Moghaddam, A. Ghodratnama , H. Rostami ,
Volume 22, Issue 3 (IJIEPR 2011)
Abstract
Hub covering location problem, Network design, Single machine scheduling, Genetic algorithm, Shuffled frog leaping algorithm |
Hub location problems (HLP) are synthetic optimization problems that appears in telecommunication and transportation networks where nodes send and receive commodities (i.e., data transmissions, passengers transportation, express packages, postal deliveries, etc.) through special facilities or transshipment points called hubs. In this paper, we consider a central mine and a number of hubs (e.g., factories) connected to a number of nodes (e.g., shops or customers) in a network. First, the hub network is designed, then, a raw materials transportation from a central mine to the hubs (i.e., factories) is scheduled. In this case, we consider only one transportation system regarded as single machine scheduling. Furthermore, we use this hub network to solve the scheduling model. In this paper, we consider the capacitated single allocation hub covering location problem (CSAHCLP) and then present the mixed-integer programming (MIP) model. Due to the computational complexity of the resulted models, we also propose two improved meta-heuristic algorithms, namely a genetic algorithm and a shuffled frog leaping algorithm in order to find a near-optimal solution of the given problem. The performance of the solutions found by the foregoing proposed algorithms is compared with exact solutions of the mathematical programming model .
Dr. A. Ghodratnama, Prof. R. Tavakkoli-Moghaddam, Dr. A. Ghodratnama Baboli Vahdani, Mr. B. Vahdani,
Volume 25, Issue 4 (IJIEPR 2014)
Abstract
Hub location-allocation problems are currently a subject of keen interest in the research community. However, when this issue is considered in practice, significant difficulties such as traffic, commodity transportation and telecommunication tend to be overlooked. In this paper, a novel robust mathematical model for a p-hub covering problem, which tackles the intrinsic uncertainty of some parameters, is investigated. The main aim of the mathematical model is to minimize costs involving: 1) the covering cost 2) the sum of the transportation costs 3) the sum of the opening cost of facilities in the hubs 4) the sum of the reopening cost of facilities in hubs 5) the sum of the activating cost facilities in hubs and 6) the sum of the transporters' purchasing cost. To solve this model, use has been made of the new extensions to the robust optimization theory. To evaluate the robustness of the solutions obtained by the novel robust optimization approach, they are compared to those generated by the deterministic mixed-integer linear programming (MILP) model for a number of different test problems. Finally, the conclusions are presented.