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KKEEYYWWOORRDDSS                                  ABSTRACT 
 

 

In this paper an Ant Colony (ACO) algorithm is developed to solve 
aircraft recovery while considering disrupted passengers as part of 
objective function cost. By defining the recovery scope, the solution 
always guarantees a return to the original aircraft schedule as soon as 
possible which means least changes to the initial schedule and ensures 
that all downline affects of the disruption are reflected. Defining 
visibility function based on both current and future disruptions is one 
of our contributions in ACO which aims to recover current disruptions 
in a way that cause less consequent disruptions. Using a real data set, 
the computational results indicate that the ACO can be successfully 
used to solve the airline recovery problem. 
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11..  IInnttrroodduuccttiioonn

                                                

   
Different events ranging from severe weather to the 
crew sickness inhibit airlines ability to always satisfy 
their planning and disrupt schedules. If such 
disruptions are not managed suitably and timely, they 
will severely affect the airlines performance. Occurring 
disruptions, airlines correct their flight operations by 
delaying flight departures, canceling flights, rerouting 
aircraft, reassigning crews or calling in new crews, and 
re-accommodating passengers. The goal is to get 
feasible, cost-minimizing plans that allow the airline to 
recover from the disruptions and their associated 
delays [1]. This problem has been studied since last 
three decades. Aircraft, crew and passengers are the 
most important aspects of airline disruption 
management [2]. Nowadays, in the airline industry, 
recovery planning is made in a primarily sequential 
manner, first recovering aircraft, then crew, and finally 
passengers [3, cited in 4].  
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Aircraft Recovery problem which is considered in this 
paper is to decide flight re-timings, flight cancellations, 
and revised routings for affected aircraft. These 
adjustments must satisfy maintenance requirements, 
station departure curfew restrictions and aircraft 
balance requirements, particularly at the beginning and 
end of the recovery period. At the end of the period, 
aircrafts should be positioned to resume operations as 
planned [1]. Complete explanation of concepts and 
models in aircraft recovery problem can be obtained in 
Clausen et al. [5], Yu and Qi [6], Kohl et al. [7], 
Anderson and Varbrand [8], Filar et al. [3] and Clarke 
[9]. When the aircraft recovery problem is solved, it 
can result in disrupted passengers. Canceling or 
delaying the departure of a flight will directly affect the 
passengers on that particular flight. It can also, 
indirectly, affect the passengers on the next flight in the 
route for the aircraft in question, if the planned ground 
time between the two flights is too short to cover for 
the delay [8]. A limitation of most of the existing 
aircraft recovery models is that passengers are not 
modeled clearly. Jafari and Zegordi [10, 11] have 
developed a mathematical model for airlines schedule 
recovery which recovers aircrafts and disrupted 
passengers simultaneously. But they have not 

Airline Scheduling,  
Disruption Management, 
Aircraft Recovery,  
Ant Colony Optimization Algorithm 

SSeepptteemmbbeerr  22001100,,  VVoolluummee  2211,,  NNuummbbeerr  33    
 

IInntteerrnnaattiioonnaall  JJoouurrnnaall  ooff  IInndduussttrriiaall  EEnnggiinneeeerriinngg  &&  PPrroodduuccttiioonn  RReesseeaarrcchh  
  

htthttpp://IJIEP://IJIEPRR.iust.ac.ir/.iust.ac.ir/ 

IInntteerrnnaattiioonnaall  JJoouurrnnaall  ooff  IInndduussttrriiaall  EEnnggiinneeeerriinngg  &&  PPrroodduuccttiioonn  RReesseeaarrcchh     ((22001100))    pppp.. 112211--112288  

 ISSN: 2008-4889  

mailto:Zegordi@modares.ac.ir
mailto:Niloofar.Jafari@gmail.com


112222               S. H. Zegordi & Niloofar Jafari                   Solving the Airline Recovery Problem By Using Ant Colony ……  

presented a solution methodology for their model 
especially for large scale cases. One important quality 
of a recovery solution strategy and algorithm is that it 
has to produce a solution fast. Løve et al. [12] claim 
that it should be generated in less than 3 min, otherwise 
the recovery solution can become infeasible. During 
the last two decades, some powerful metaheuristics 
have been developed and successfully applied when 
solving many real-life problems [13]. Recently some of 
the metaheuristics have been applied for recovery 
problems. Andersson [14] has used a Tabu Search (TS) 
and a Simulated Annealing (SA) approach to the flight 
perturbation problem. Jingjie et al. [15] have designed 
a Tabu Search algorithm to solve an integer 
programming model for airport gate reassignment. In 
this paper, using ant colony optimization (ACO) 
method, a solution for the airline recovery problem is 
presented.  
Defining the recovery scope, it will focuses on the 
disrupted aircrafts and flights instead of all of them. As 
a result problem size will be reduced and also 
guarantees a return to the original aircraft schedule. To 
the best of our knowledge, we are the first researchers 
to apply ACO in the field of aircraft recovery and our 
results demonstrate that this approach provides good 
solutions within a reasonable computation time. 
The rest of the paper is organized as follows: Section 2 
explains the airline recovery problem considering 
disrupted passengers. In Section 3 we describe our 
solution methodology to solve this problem. The 
computational results are presented in Section 4. In the 
last Section, we conclude with directions for further 
research. 
 

2. Airline Recovery Problem Considering 
Disrupted Passengers 

In operation, the schedule frequently faces with 
disruptions. Then the object is to turn to the initial 
schedule fast and with the minimum cost. Disruption or 
its affects can disrupt flights and their resources as well 
as passengers, so it is required to generate recovery 
plan for disrupted flights, disrupted resources and 
disrupted passengers [10]. 
In order to do this, flights can be delayed or cancelled. 
New aircraft assignments, i.e. swaps, can be made, 
both within a fleet of aircraft as well as between 
different aircraft types. However, a flight can only be 
transferred from one aircraft type to another if the new 
aircraft has sufficient capacity to handle the passengers 
on the flight. Also passengers must be arrived to their 
destinations. Aircraft recovery formulation is as 
follows [10]: 
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The decision variables common to the model are: 
xkf: 1 if aircraft k is assigned to flight f and 0 otherwise; 
zf: 1 if flight f is cancelled and  0 otherwise; 
tdf: Actual departure time of flight f ; 
taf : Actual arrival time of flight f ; 
yp: 1 if planned itinerary p is disrupted, and 0 
otherwise. 
itp

p: Number of passengers which were initially 
assigned to itinerary p and served on it ; 

itr
p: Number of passengers which were initially 

assigned to itinerary p but reassigned to itinerary 
r. 

trnp: Number of passengers which were initially 
assigned to itinerary p but must be served on 
other airlines or other transportation mode. 

The parameters common to the model are: 
Akf: Ready time of aircraft k to operate flight f 
CAPf : Number of remaining available seats on flight 

leg f 
CCf : Cost of canceling flight f 
CDf : Cost of 1-minute delay of flight f 
Ckf : Cost of assigning aircraft k to flight f 
DTf : Expected trip (block-to-block) time of flight f 
Fs : The set of flights in recovery scope S 
IT(P) : The set of flight legs in itinerary p 
IT(P,L) : The last flight leg in itinerary p 
IT(P,n) : The nth flight leg in itinerary p 
Ks : The set of aircrafts to be used for recovery in 

scope S 
Np: Number of passengers on itinerary p 
NPf : Number of passengers in flight f 
P: The set of passenger itineraries (contains more than 

one flights) 
R(p): The set of candidate recovery itineraries for 

itinerary p 
ROs: The set of aircraft rotations in recovery scope S 
S: Recovery scope index 
Sp: Estimated cost per disrupted passenger which are 

not reassigned 
Tf: The scheduled departure time of flight f 
U: Minimum connection time 
Vk: The duty (usage) limit of aircraft k 
δr

f : An indicator to represent whether flight leg f is in 
itinerary r or not, equal 1 if flight leg f is in itinerary 
r and equal 0 otherwise 

In Jafari and Zegordi model [10], for each disrupted 
aircraft the earliest disrupted flight and its departure 
airport is considered. The disrupted flight and the next 
flights which turn back the aircraft to this airport are 
included in the aircraft rotation. Other than the 
disrupted rotations, some undisrupted rotations 
(rotations with no aircraft disruptions) have been 
included. These rotations are used to check the 
possibility of swapping their aircrafts with the aircrafts 
of disrupted rotations. The originally assigned aircrafts 
to all rotations in the scope are considered to be used in 
the recovery process. As Guo [16], the length of the 
recovery period is not deterministic. It denotes the 

horizon to recover from a disruption. With other words 
the recovery horizon lasts until all changes caused by 
the disruption have been carried out. Jafari and Zegordi 
[10], have done pairwise comparison for rotations of 
all aircrafts which can be used for the recovery, to 
check in the case of exchanging their rotations, how 
long these changes last. This method ensures that all 
affects of each disruption are investigated. Finishing 
the comparison, flights and rotations which form the 
recovery scope are determined. The objective function 
of the model [10] minimizes the total cost associated to 
recovering all flights, aircrafts and passengers in the 
recovery scope. It is include cost of aircrafts 
assignment, total delay, cancellation and disrupted 
passengers. The first term in the objective function is to 
recover open positions of each disrupted flight by using 
the most efficient aircrafts in the system. The second 
and third terms promote reliable operations by 
minimizing flight delay and cancellation, respectively. 
The remaining terms recover disrupted passengers 
through reassigning them to the earliest available 
itinerary or transport them to the destination by any 
other way, other airlines or an alternative way of 
transportation. Constraints in (2) assign available 
aircraft to sequential rotations which are not 
overlapped. Constraints in (3) ensure that if a flight is 
canceled, no aircraft is assigned to it. Rotations aircraft 
usage is defined in Constraints (4). Departure time of 
each flight is determined in Constraints (5) to (8). 
Constraints in (9) guarantee that in the case of delay, 
there is no duty limit violation for that flight’s aircraft. 
Also satisfaction of maintenance requirements of 
aircrafts can be met here. Constraints in (10) relate the 
departure and arrival times for each flight. Constraints 
in (11) and (12) classify disrupted itineraries. 
Constraints in (13) to (16) reassign disrupted 
passengers. Finally, Constraints in (17) define the 
decision variables. 
 

3. Ant Colony Optimization Algorithm 
The ACO approach dates back to the pioneering work 
by Dorigo et al. [17 cited in 18]. ACO randomly 
constructs solutions in a step-by-step fashion. An ant is 
a conceptual unit performing a random construction of 
a solution. So-called pheromone values store 
information on how good a single construction step 
was in the past, whereas so-called visibility values 
evaluate the presumable goodness of that step in the 
present context [18]. Contrary to most applications of 
metaheuristics such as simulated annealing (SA) or 
genetic algorithms (GA), the ACO approach is usually 
applied to highly constrained problems [18]. Also ACO 
is one of the heuristic computational procedures that 
are designed to search and find answers to complex 
problems in situations where the number of possible 
alternative solutions is vast [19]. However, the 
application of ACO is restricted to optimization 
problems that can be described by graphs [20 cited in 
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21]. Thus it is expected this technique to be especially 
appropriate for solving the problem described in the 
previous sections. The aircraft recovery problem is 
modeled by a graph where a set of nodes represent 
aircrafts and the other set represents flights and 
rotations in the recovery scope (Fig.1). The role of the 
ants is as aircrafts. They must select the flights and 
rotations in a way that minimize delay, cancellation, 
reassignment and disrupted passengers cost. The flight 
nodes which are not visited by ants will be assumed as 
canceled flights.  
 

 

Fig.1. Graph representing the Aircraft Recovery problem 
with 2 aircrafts (AC1-AC2), 5 rotations (R1-R5) and 11 

flights (F1-F11) solved by the ACO. 
 
Each ant chooses aircraft nodes randomly but chooses 
next flights and rotations nodes to visit based on a 
probability function by Eqs. (18, 19). Ant k at node Fi 
(flight i) selects the next node Fj (flight j) to move 
based on Eq. (18) when q  q0: 

βαβα ητητ )],([)],([max)],([)],([
)(

lilijiji
iJFl k∈

=            (18) 

 

Where q is a random number uniformly distributed in 
[0, 1], and 0   q0   1 is a predetermined parameter that 
determines the relative importance of exploitation 
versus exploration. τ(i, j) denotes the pheromone level 
on edge (i, j). And η(i, j) represents a heuristic function 
for visibility value. Jk(i) denotes the set of nodes to be 
visited by ant k at node Fi. A node belongs to Jk(i) if it 
satisfies capacity and duty limit constraints of the 
aircraft as well as rotation definition. Each aircraft has 
a specific capacity for passengers therefore flights with 
less or equal number of passengers can be assigned to 
that aircraft. Rotations which their last flight arrive 
after end time of the aircraft can not be assigned to. 
Flights which belong to the same rotation or one of 
them is the last flight of a rotation and the other one is 
the first flight of another one, can be selected 
sequentially. Parameter α, β determines the relative 
importance between the density and the visibility. If q 
> q0, Fj is randomly selected from Jk(i) according to 
the probability distribution given by the following Eq. 
(19): 
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The heuristic function η (Eq. (20)) in this case is the 
ratio of cost of current disruption of the flight j at time t 
(disrupt (j)) and cost of consequent disruption of 
choosing flight j after flight i (disrupt (i, j)). If a flight 
is already disrupted or cause less disruption so the ant 
will feel a stronger attraction to visit it.  
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Flight j is already disrupted as it can not fly according 
to its initial schedule. It means flight j will be delayed 
or canceled so cost of current disruption of the flight j 
at time t (disrupt (j)) is calculated based on Eq. (21). 
Delay cost is multiple of duration of delay (delay (j)) to 
number of passengers of flight j (NP(j))

]

 and cost of one 
minute delay (CD). Cancellation cost is multiple of 
number of passengers of flight j (NP(j)) and cost of 
cancellation (CC). Cost of current disruption of each 
unassigned flight (disrupt (j)) is updated after each 
assignment by ants. Therefore effects of every 
assignment are reflected on the remaining flights and 
the new decision will be made based on the previous 
decisions.  
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Cost of consequent disruption of choosing flight j after 
flight i (disrupt (i, j)) is presented by Eq. (22).When 
flight j is chosen after flight i, if it is according to the 
initial schedule it doesn’t cause any cost. But in the 
case that flight j is reassigned to an aircraft different 
from the initial assignment, it is an aircraft swap. Cost 
of swap within the same fleet is C and between 
different aircraft types is Ct. Also flight j may be 
delayed in the new schedule. When an ant assigns 
flights to all aircrafts it has finished his job. All g ants 
finish their jobs during the iteration. The update of the 
pheromone concentration in the edges is done at the 
end of each iteration and is given by Eq. (23). 
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Where [ 10,∈ρ  expresses the pheromone evaporation 
phenomenon, and  are pheromones deposited 

in the edges (i, j) followed by all the g ants after an 
iteration, which are defined as: 
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Where costk is the value of the objective function for 
each ant k and maxcost is the most value of the 
objective function in the iteration. ACO algorithm 
developed for aircraft recovery is illustrated in a 
flowchart in Fig.2. ⎪
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IN (iteration number): l (index for IN) = 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2. Flowchart of ACO for aircraft recovery problem 
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According to the related studies, metaheuristics 
solution performance or quality is sensitive to certain 
control parameters. ACO control parameters are as 
follows: iterations number, number of ants in each 
iteration, relative importance of density and visibility 
(α), (β), initial density ( ),( ji0τ ), evaporation factor (ρ) 
and importance of exploitation versus exploration (q0).  
To set the parameters in the proposed ACO, we ran 
tests with factorial designing. The tests have been done 
with iteration numbers of 5, 7, 10, 15 and 20, number 
of ants of 10, 15, 20 and 25, the relative importance of 
the visibility parameter (β) of 0.5, 1, 1.5 and 2 and 
finally with the relative importance of the density 
parameter (α) of 1, 2, 3, 4 and 5. Based on the results, 
we found that the following parameter values gave the 
average best results: Iteration number= 5, number of 
ants= 20, the relative importance of the visibility 
parameter (β) = 1 and the relative importance of the 
density parameter (α) = 3. Pheromone is initialized by 
setting 1ji0 =),(τ  for all (i, j), evaporation factor (ρ) is 
set to 0.6 and q0 to 0.7. 

 

4. Computational Results 
Our ACO algorithm is tested on a real problem 
secondary data set obtained from Andersson [14]. The 
data set (S1) contains short flights, between 15 and 125 
minutes and is perturbed in two different ways, a and 
b. In “a” an aircraft is unavailable for some hours, and 
in “b” some flights are imposed with delays. Some 
passengers’ itineraries are extracted from data set S1 to 

be able to solve simultaneous aircraft and passenger 
recovery model in this study. Table 1 sums up the 
important characteristics for the data set. The minimum 
connecting time between two flights of each aircraft 
and also for passengers to walk between the arrival and 
departure gates of the consecutive flights is 10 min. 
The maximum delay allowed for a single flight is set to 
60 min for all flights. The computer program of the 
ACO algorithm described in section 3 was written in 
Visual Basic 2008 and ran on a Sony Vaio Intel (R) 
Pentium (R) M, computer with 768 Mb of memory and 
1.73 GHz processors. 

 
Tab. 1. Data set 

 Data set S1 
Number of aircrafts 13 
Number of aircraft types 2 
Number of flights 100 
Number of airports 19 
Number of passengers 2236 
Number of Itineraries 8 
Number of connecting passengers 55 

 
First the problems are solved as aircraft recovery 
problem with out considering connecting passengers to 
show the ability of ACO to suggest good solutions 
comparing to the results of SA and TS algorithms done 
by Andersson [14]. The results for the S1a and S1b are 
presented in Table 2. 

 
Tab. 2. Characteristics of the best known solutions and results of ACO, SA and TS for aircraft recovery for S1a 

and S1b 
Best Known Solution-BKS Weights TS Result 

(% from 
BKS) 

 SA 
Result  

(% from 
BKS) 

ACO 
Result  

(% from 
BKS) 

Objective 
Function 

Value  d s st c CD C Ct CC 
n  

0 0 0 880 0 8 2 30 1 10 100 20 1 

0 0 0 960 0 4 0 46 1 10 1000 20 2 

0 0 0.004 4620 1420 0 0 32 1 10 1000 100 3 

0 0 0 2920 0 2 4 25 1 10 100 100 4 

S1a 

0.045 0 0 120 0 12 0 0 1 10 100 20 1 

0 0 0 650 250 4 0 0 1 100 100 20 2 

0 0 0 1580 1580 0 0 0 1 400 100 20 3 

S1b 

 
CC is the weight or cost for canceling a flight, Ct the 
weight for assigning a flight to an aircraft of a different 
type, C the weight for assigning a flight to an aircraft in 
the same fleet as originally planned, and CD is the 
weight for delaying a flight. The best known solutions 
(BKS) have been calculated by a Lagrangian Heuristic 
by Andersson and Varbrand [8]. c notes how many 
passengers that are affected by a cancelled flight, st and 
s how many swaps between aircraft types and regular 
swaps that are made, and finally d is the total amount 

of passenger delay in the solution. Objective Function 
Value is based on aircraft recovery formulation Eq. (1). 
In the last three columns of Table 2, meta-heuristic 
solutions are compared to the best known solution 
(BKS) for the particular problems. Results show that 
ACO is able to suggest good recovery solutions for 
aircraft recovery problem. ACO solutions are the same 
as BKS’s except in S1a3 and its difference is just about 
0.004%. Running ACO for simultaneous aircraft and 
passenger recovery model, results and the comparison 

IInntteerrnnaattiioonnaall  JJoouurrnnaall  ooff  IInndduussttrriiaall  EEnnggiinneeeerriinngg  &&  PPrroodduuccttiioonn  RReesseeaarrcchh,,    SSeepptteemmbbeerr  22001100,,  VVooll..  2211,,  NNoo..  33  



S. H. Zegordi & Niloofar Jafari                   Solving the Airline Recovery Problem By Using Ant Colony ……                             127  

 

IInntteerrnnaattiioonnaall  JJoouurrnnaall  ooff  IInndduussttrriiaall  EEnnggiinneeeerriinngg  &&  PPrroodduuccttiioonn  RReesseeaarrcchh,,    SSeepptteemmbbeerr  22001100,,  VVooll..  2211,,  NNoo..  33  

with Integer Nonlinear Planning (INLP) method [10] 
are presented in Tables 3 &4. Jafari and Zegordi [10] 
have used LINGO 8.0. Except three cases (S1a- 2-2, 4-
1 & S1b- 1-2) solutions obtained by ACO are as well 
as INLP ‘s . ACO CPU times are less than INLP’s. 
 

5. Conclusion 
In this paper while reviewing some related studies in 
airline recovery, a limitation in this field which is 
integrated recovery is emphasized. Most of the existing 
aircraft recovery models do not cover disrupted 
passengers clearly. We have developed an Ant Colony 
(ACO) algorithm to solve aircraft recovery while 
considering disrupted passengers as part of objective 
function cost. A heuristic function based on current and 
future disruptions is defined as visibility function in 

our ACO algorithm. So ants will feel a stronger 
attraction to choose flights which are already disrupted 
or cause less disruptions. Therefore it prevents 
propagation of disruptions.  
Other metaheuristics like as TS and GA have been just 
applied to aircraft recovery but not integrated recovery. 
Although computational results and comparison 
between these three metaheuristics in aircraft recovery 
and between ACO and INLP in integrated recovery 
indicate that our ACO algorithm is able to successfully 
handle airline recovery. Future studies can be done on 
using our ACO algorithm for other similar recovery 
problems. Furthermore using other metaheuristics 
approaches for integrated airline recovery problem can 
be useful. 

 
Tab. 3. Results for simultaneous aircraft and passenger recovery for S1a 

Results Weights 
trnp itr

p d s st c 

Objective Function 
Value Time(s) Solution 

Method SP CD C Ct CC 
No 

20 0 0 8 2 30 1080 83 INLP 
20 0 0 8 2 30 1080 20 ACO 

10 1 10 100 20 1-1 

10 0 225 8 2 30 1425 67 INLP 

10 0 225 8 2 30 1425 22 ACO 
23 1 10 100 23 1-2 

20 0 0 4 0 46 1160 53 INLP 
20 0 0 4 0 46 1160 24 ACO 

10 1 10 1000 20 2-1 

10 0 225 4 0 46 1553 23 INLP 

10 0 225 6 0 46 1573 20 ACO 
23 1 10 1000 23 2-2 

20 0 1420 0 0 32 4820 66 INLP 

20 0 1420 0 0 32 4820 23 ACO 
10 1 10 1000 100 3-1 

10 0 1645 0 0 32 5845 60 INLP 

10 0 1645 0 0 32 5845 26 ACO 
100 1 10 1000 100 3-2 

20 0 0 2 4 25 3120 49 INLP 

20 0 0 4 4 25 3140 25 ACO 
10 1 10 100 100 4-1 

10 0 225 2 4 25 4145 49 INLP 

10 0 225 2 4 25 4145 21 ACO 
100 1 10 100 100 4-2 

 
Tab. 4. Results for simultaneous aircraft and passenger recovery for S1b 

Results Weights  
trnpitr

p d s st c 
Objective Function 

Value  Time(s)  Solution 
Method  SP CD  C  Ct  CC  No  

15  0  0  12  0  0  270  71  INLP  
15 0  0  12  0  0 270 23 ACO 

10  1  10  100  20  1-1  

5 0 225 12 0 0 460 32  INLP  
5 0  225  14  0  0 480 20 ACO 

23  1  10  100  23  1-2 

15 0 250  4  0  0  800  77  INLP  
15 0  250  4  0  0  800 20 ACO 

10  1  100  100  20  2-1 

5 0  475  4  0  0  990 77  INLP  
5 0  475  4  0  0  990 21 ACO 

23  1  100  100  23  2-2  

15  0  1580  0  0  0  1730  20  INLP  
15 0  1580  0  0  0 1730 18 ACO 

10  1  400  100  20  3-1  

5 0 1805 0 0 0 1920 15 INLP 

5 0 1805 0 0 0 1920 17 ACO 
23  1 400 100 23 3-2 
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