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KKEEYYWWOORRDDSS                                  ABSTRACT 
 

This article proposes a stochastic vehicle routing problem within the 

frame-wok of chance constrained programming where one or more 

parameters are presumed to be random variables with known 

distribution function. The reality is that once we convert some special 

form of probabilistic constraint into their equivalent deterministic 

form then a nonlinear constraint generates. Knowing that reliable 

computer software for large scaled complex nonlinear programming 

problem with 0-1 type decision variables for stochastic vehicle routing 

problem is not easily available merely then the value of an 

approximation technique becomes imperative. In this article, theorems 

which build a foundation for moving toward the development of an 

approximate methodology for solving the stochastic vehicle routing 

problem are stated and proved. Using these theorems one can easily 

convert a nonlinear type vehicle routing problem of special type into 

an equivalently designed linear problem that can be solved fast and 

easy. 
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11..  IInnttrroodduuccttiioonn


  

Stochastic Vehicle Routing problem (SVRP) has 

attracted the attention of many researchers since its 

introduction into the literature of operations research in 

1969 [28, 29]. A SVRP means to design a set of routes 

starting from and eventually returning to a central 

depot to deliver products to a fixed number of demand 

points such that capacity constraints, probabilistic 

demands, and the duration of the routes are satisfied. 

Vehicle routing problem (VRP) and SVRP are key 

issues in supply chain management and distribution 

systems. As management begins listening and paying 

attention to customers and wishes to fulfill their needs 

then the nature of this problem becomes more complex 
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and demanding. To that end, management may 

consider time windows for on time delivery and 

suitable restrictions for answering customer’s 

requirements. Vehicle routing with stochastic elements 

has received some attentions as well. Stewart, and 

Golden [26], Stewart [25], Golden and Yee [10], Dror 

and Trudeau [8], Laporte and Louveau [19] have 

employed stochastic optimization techniques to solve 

small size problems while Bertsimas et al. [2], Golden 

et al.[12, 13], Holmes and Parker [15], Magnanti [20], 

Nagy and Salhi [21], Salhi and Rand [23], Waters [31], 

Stacy [24], and Wassan and Osman [30] have looked 

into the variant approaches of this problem. This 

problem that fully satisfies the criteria of multiple 

objective programming has received very limited 

attention in the literature. It is believed that this is 

partially because this problem belongs to the class of 

the NP hard and it is of large scale problems. 

Park [22], proposed a multiple objective analysis of the 

deterministic vehicle routing problem. In 2004, Bianchi 
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et al [3] studied vehicle routing problem with 

stochastic demand using meta-heuristic approaches. In 

2006, Bianchi et al. [4] have considered five meta-

heuristics of Simulated Annealing; Tabu Search; 

Iterated Local Search; Ant Colony Optimization and 

Evolutionary Algorithms to study VRP with stochastic 

demand. In 2005, Haugland, Ho and Laporte [14] 

studied the delivery districts for the VRP with 

stochastic demands. A two-stage hybrid algorithm for 

pickup and delivery vehicle routing problems with time 

windows and multiple vehicles is studies by Bent et al. 

[1].  

In the first stage, a simple simulated annealing 

algorithm is used for decreasing the number of routes 

while the second stage uses large neighborhood search 

for decreasing total travel cost. Zheng and Liu [34] 

studied vehicle routing problem in which the travel 

times are assumed to be fuzzy variables. Jozefowiez et 

al. [35, 36, 37] have studied multi objective vehicle 

routing problem using set covering and meta-heuristic 

approaches. A good review of multiple objective 

programming is presented in the work of Zeleny [41], 

Deb et al. [38] and Zare Mehrjerdi [39, 40]. There are 

some methods available for generating the set of non-

dominated solutions in multi objective programming 

[38-41]. 

Single and multiple objectives stochastic Vehicle 

Routing Problems can be classified into four categories 

as listed below: 

 

1. Stochastic Customers: Jaillet t al. [16]; Jaillet 

et al. [17], 

2. Stochastic Demands: Bianchi et al. [3]; 

Bianchi et al. [4]; Dror and Laporte [8]; Golden 

and Yee [10]; Golden and Stewart [12]; Haugland 

et al. [14]; Tan el al [27]; Tillman [28]; Yee and 

Golden [32];  

3. Stochastic travel and unload times: Cook and 

Russell [7, 33];  

4. Stochastic demands and stochastic travel and 

unload time: Zare Mehrjerdi [33]. 

 

The work presented here considers the SVRP of type 4 

and studies the problem within the frame-wok of 

multiple objective goal programming problems [33]. 

The paper is organized as follows: a general view of 

SVRP is given in section 2; chance constrained 

programming model of the problem is discussed in 

section 3; assumptions and notations is the topic of 

section 4 while stochastic vehicle routing problem is 

discussed in section 5; distributions other than normal 

is the topic of section 6. Author’s conclusion is given 

in section 7.  

 
2.Vehicle Routing Problem 

Since 1959 when Dantzig and Ramser [9] first 

introduced the VRP and proposed a linear 

programming based heuristic for its solution the 

heuristic method has been widely researched. 

Christofieds and Eilon [6] indicated that the largest 

VRP of any complexity solved to date by exact 

methods and reported in the open literature contains 

only 31 demand points. Before considering model 

development for this research, a formulation of the 

VRP problem as a 0-1 integer program is given below. 

Problem that is known as “pure delivery” can be 

formulated as [9]:   
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Where; 
 

N= Number of nodes 

NV= Number of vehicles 

kQ Capacity of vehicle k 

kT Maximum time allowed for vehicle k on a route 

id Demand at node i (assuming that d1=0) 

ikt Time required for vehicle k to deliver or collect 

at node )0( 1 kti  

ijkt Travel time for vehicle k from node i to node j  

ijd Distance from node i to j 
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                     1 if arc (i, j) is traversed by vehicle k 

ijkX  

         0 Otherwise 

iZ Arbitrary real numbers, i=1, 2,…,N. 

 

The objective function (1) represents minimization of 

total distance traveled by NV vehicles. Alternatively, 

costs could be minimized by replacing ijd with ijC , 

depending on the vehicle type. Equation (2) ensures 

that each demand node is served by exactly one 

vehicle; equation (3) ensures that if a vehicle enters a 

demand node it must exit from that node; and (4) 

guarantees that vehicle availability is not exceeded; 

equation (5) prohibits sub-tours generation, equation 

(6) is vehicle capacity constraint, and finally (7) is the 

total elapsed route time constraint. Decision variables 

Xijk that is of 0 and 1 type is represented by equation 8.  

The set of constraints (2), (3), (4), and (5) generate a 

space that we will refer to that as S in the remainder of 

this article. All feasible decision variables of problem 

belong to this space. For having any decision variable 

from set S as an acceptable solution of the problem it 

must satisfy constraints (6), (7), and (8) as well. 

 

3. Chance Constrained Programming 
The event of constrained violation must be 

regarded as a risk taking issue. Having identified  

(1- ) as the level of the constraint persistency then 

the risk level for that constraint is . The presence of 

risk in the linear programming model adds another 

dimension into the managerial decision making 

problem. The input factors play a significant role in 

deteriorating systems reliability by violating one or 

more constraints. One well-defined methodology for 

treating problems with probabilistic constraints is 

known as chance constrained programming (CCP). 

Abraham Charnes and William Cooper [5] have 

proposed CCP models such as the E-model 

(expectation optimization model), the V-model 

(variance minimization model) and the P-model 

(probability maximization model).  

Tillman [28] proposed a modification of the Clarke and 

Wright approach for multi-depot delivery and 

collection problems having probabilistic Poisson 

distributed demands. The objective function of the 

delivery problem for a given number of stop points on 

a proposed route is 

 

Minimize     

})()()()({)(cos 2
0

1 



R

R

R
dDDhDCdDDhDCMintE    (9) 

 
Where the first expression from the right indicates the 

cost of not hauling enough commodities to satisfy all 

customer demands on a route and the second 

expression from the right represents the cost of hauling 

excess commodity on the route that is not needed. 

The value of R is determined for each route is the load 

assigned to the truck for that route. Notations are: 

 

                  Cost of hauling excess commodity      

                  on the route that is not needed or 

)(1 DC  

                Cost of completing scheduled route  

                             and having unfilled capacity 

 

               Cost of not hauling enough  

                commodity to satisfy all the  

               demands on the route, or 

)(2 DC  

                Cost of filling truck prior to  

                              completing the scheduled route  

 

ndddD  ...21                                          (10) 

 

Where, 

 

di = the probabilistic demand for the i
th

 stop 

 

f(di) =the probability density function of the random 

variables di 

 

h(D) = the probability density function of D 

 

Golden and Stewart [12] have extended Tillman’s 

SVRP in a different way considering only a single 

depot problem. In this technique the locations on the 

route are n1, n2 ,.., nk, and it is assumed that all vehicles 

have the same capacity Q and that the total demand for 

all locations is  

 

kdndndnX  ...21                                   (11) 

 

Where, dni is the demand at location i which is 

described by the independent Poisson distribution with 

mean and variance Yni. Then  

 

E(X) = Var(X) = Yn1+Yn2+…+Ynk                          (12) 
 

Using the central limit theorem and approximating 

with normal distributions, then  
 

U=Yn1+Yn2+…+Ynk                                                (13)  

 

and  
 

2/1)(U .                                                            (14) 
 

The mathematics of the primary and secondary errors 

is based upon the following definitions: 
 

3.1. Primary Error 

A primary error occurs when a vehicle cannot satisfy 

the demands of the customers on the route to which it 

has been assigned.  
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3.2. Secondary Error 

A secondary error occurs when a vehicle returns to the 

central depot after satisfying the demands on its route 

with more than 100(1- ) % of its original load where 

.10   

According to above definitions we can write the 

following formula for the primary and secondary 

errors.  

 

)1()
)(

()(Pr)(
2/1
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
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Q
ZPimaryErrorPQXP    (15) 
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2/1

Q
ZPrrorSecondaryEPQXP   (16)  

 

Where Q is the truck capacity and .10   

 

Assuming that  is nearly the same for most of K 

routes, then an artificial capacity
 , as the vehicle 

capacity, can be used along with the Yni as demand 

points and the “Saving” approach of Clarke and Wright 

to obtain a fixed set of routes. Therefore, the following 

problem is the one that must be solved: 

 

Minimize {Expected total cost} 

S.t. 

  {  

1. A fixed set of routes 

2. Satisfaction of customers 

3. Vehicle capacity is obeyed 

4. P {total demand   truck capacity } 

>= (1- ) 

 } 

 

where .10   

 

Golden and Yee [11] proposed a dynamic formulation 

of the problem for determining the driver operating 

strategies when customer demands on a route are 

probabilistic. Specifically, after delivery of goods to a 

demand point on a fixed route, which has already been 

determined by the Clarke and Wright procedure, the 

driver is faced with the decision of whether to return to 

the depot to replenish the supply. However, the optimal 

decision is based on whether the remaining supply of 

goods in the vehicle is greater or less than some critical 

value which must take into account the following 

criteria: 

 

1. The probabilistic demands on the remaining 

portion of the route, and the distribution between 

the remaining customers 

2. The distances between the remaining customers 

 

Cook and Russell [7] have successfully treated a large 

routing problem with timing constraints and stochastic 

travel times and demands. The authors approach to the 

problem is by generating a deterministic solution using 

the MTOUR algorithm and then testing these routes via 

simulation to demonstrate that they are effective; 

however, the stochastic nature of the problem is not 

explicitly considered in the route generation stage. The 

basic procedure for the generation of travel times and 

pick up times is based on the development of the 

multiple regression equations for the intra-city transit 

times is derived by employing the Euclidean distance 

and the average speed limit as the independent 

variables. The service time (pickup time) is considered 

to be a function of two independent variables: number 

of containers and the total capacity of the containers. 

Based on these assumptions, the second regression 

equation for pickup times is determined.  

 
4. Assumptions and Notations 

The assumptions and notations used in the SVRP 

model development are as listed below. 
 

4.1. Assumptions 

1. Customer demands are random variables with know 

distribution functions 

2. Traveling time from one point to next is random 

variables with known distribution function 

3. Unloading time at each customer demand point is 

random variable with known distribution function 

4. There are NV vehicles available for shipping 

purposes 

5. All vehicles have the same capacity 

6. The commodity to be transported is homogeneous 

7. The shortest distance between two stations is 

considered to be Euclidian 

8. For each route, a total travel time is identified 

beforehand 

9. For each route, a total unloading time is identified 

beforehand 

10. 
kkk  ,,,,,  are predetermined constant 

numbers. 

  
4.2. Notations 

id  the
thi customer demand, and it is a random 

variable (assuming that d1=0) 

NV= total number of trucks 

N= Number of nodes 

Q = truck capacity 

S NV  = indicates the convex set of feasible region for 

NV trucks 

1ijkX if vehicle k travels from node i to node j 

        = 0 otherwise 

kUT A predetermined maximum total travel time 

allowed for the k
th

 vehicle route 

kTR A predetermined maximum total travel time 

allowed for the k
th

 vehicle route 
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k A predetermined level of constrained violation 

of the k
th

 route considering the vehicle capacity 

k A predetermined level of constrained violation of 

the k
th

route considering total unloading time 

k A predetermined level of constrained violation 

of the k
th

route considering the total travel time 

ikt Time required for vehicle k to deliver or collect 

at node )0( 1 kti  

ijkt Travel time for vehicle k from node i to node j  

ijd Distance from node i to j 

 
         1 if arc (i, j) is traversed by vehicle k 

ijkX  

         0 Otherwise 

iZ Arbitrary real numbers, i=1, 2,…,N. 

 
5. Stochastic Vehicle Routing Problem 

The CCP formulation of the VRP within the 

framework of multiple objective goal programming is 

led to the development of the stochastic goal 

programming model of the vehicle routing problem 

(SVRP). This model allows decision makers (DMs) 

involvement in the solution process of the problem to 

obtain satisfactory vehicle routes. The problem 

formulation for the SVRP is divided into two groups 

according to the type of the criteria that is to be 

minimized. The objective functions are realized to be: 

 
1. Total cost (or distance) minimization 

2. Total time minimization 

 
5.1. Problem Type I (Cost Minimization) 

When the cost (or distance) is considered as a criterion, 

the objective function is linear in terms of decision 

variable .ijkX  [9, 33] 
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The set of constraints (21), (22), (23), (24) and (25) 

produce a space that we will refer to that as S in the 

remainder of this article. All feasible decision variables 

of problem belong to this space. For having any 

decision variable from set S as an acceptable solution 

of the problem it must satisfy other constraints of the 

problem as well.  

The EDF of problem P1 is as shown in P2 provided 

that demand, travel time and unload time are normally 

distributed random variables [6, 18]: 
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5.2. Problem Type II (Time Minimization) 

When total time is realized as criterion then the 

objective function to be minimized is nonlinear. This is 

shown by the following problem: 
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The EDF of problem P3 is shown in P4 [6, 18]: 
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6.Distributions Other than Normal 
The deterministic constraints (27), (28), and (29) 

can be replaced with some other constraints in an 

easier form, if the time and demand distributions are of 

the same special forms. There are several distributions 

that satisfy the following condition: 
 

ii  2
              (39) 

 

This means that the variance is some constant multiple 

of the mean of that distribution. Distributions such as 

Poisson and Chi-square satisfy the above condition. 

The values of   for these distributions are as shown in 

table 1. 
 

Tab. 1. Specific distribution with simple 

relationship between mean and variance 

Distribution Relationship   

Poisson ii  2  1 

Chi-square 








2

i

i  
2 

The following theorem shows the existence of a set of 

deterministic linear time and demand constraints which 

are equivalent to the nonlinear set of the time and 

demand constraints of the RIS problem.  
 

Theorem 1 

Under the following conditions: 
 

1. The probability distributions of tij are 

independent and stable and 
ijij tt  2  

2. The probability distributions of ti are 

independent and stable and 
iit

tt  2  

3. The probability distributions of di are 

independent and stable and 
ii dd  2  

 

There exist values 

21 ,TT and 
Q such that: 

 








Ii

ji
Jj

ijt TX
ij 1                           (40) 








Ii

ji
Jj

ijt TX
i 2                            (41) 
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






Ii

ji
Jj

ijd QX
i

                           (42) 

 

are equivalent to the following deterministic constraint, 

respectively. 

 

 





 
Ii

ji
Jj

ijtijt TXNX
ijij 1

2/1221 }){1(    (43) 

 

 





 
Ii

ji
Jj

ijtijt TXNX
ii 2

2/1221 }){1(    (44) 

 

 





 
Ii

ji
Jj

ijdijd
QXNX

ii

2/1221 }){1(    (45) 

 

Proof 

The proof is developed only for (40). One can prove 

similarly for (41) and (42) as well. Since decision 

variable Xij is either zero or 1 then  

 
2

ijij XX                (46) 

 

Therefore 

 
222

ijtijt XX
ijij

               (47) 

 

Or  

222

ijt

Ii
ji
Jj

ijt

Ii
ji
Jj

XX
ijij

 








             (48) 

 

2/1222/1 }{}{ ijt

Ii
ji
Jj

ijt

Ii
ji
Jj

XX
ijij

 








 = 

2/12/12/12 }{}{ ijt

Ii
ji
Jj

ijt

Ii
ji
Jj

XX
ijij

 








       (49) 

 

Substituting (48) in equality (43), then 
 

 



 




 
Ii

ji
Jj Ii

ji
Jj

ijtijt TXNX
ijij 1

2/12/11 }{)1(   (50) 

 

Let 

M = 
2/1}{ ijt

Ii
ji
Jj

X
ij







             (51) 

And 

)1(1  Nq             (52) 

 

Therefore 

MqMT 2/12

1               (53) 

 

or 

01

2/12  TMqM               (54) 

 

After solving for M we get 

2/})4({ 2/1

1

22/1 TqqM              (55) 

 

However, 

 
 1

22/1

1

22/12 }2/))4({( TTqqM    (56) 

 

Hence, 








Ii

ji
Jj

ijt TXM
ij 1

22/12 }]{[             (57) 

Or  








Ii

ji
Jj

ijt TX
ij 1              (58) 

 

A similar analysis yields 








Ii

ji
Jj

ijt TX
i 2              (59) 








Ii

ji
Jj

ijd QX
i

   Q.E.D.           (60) 

 

Theorem 2 

If , the probability of route failure increases up to 

0.50 then, the value of 


1T will increase provided that 

T1 is a fixed value. 

 

Proof 

Let us reconsider equation (56) where  

 

)1(1

1   

 NZZq             (61) 

 

and T1 is fixed value.  
 

4/))4(242( 2/1

1

22/1

1

2

1 TZZTZT       (62) 

 

   /.// 11 ZZTT             (63) 

 

,0/  z  and this is because when  increases then 

(1- ) and 1z  decreases. However, after some 

calculations one gets the following equation: 
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2 1/2 2 3/2 3/2 1/2

1 1 1 1

2 1/2

1

/ (2 ( 4 ) 3 / 2 2 2 ) /

( 4 ) ) / 4

T z z T z T T

z T

    



      


 (64) 

 

Notice that when a and b are two positive numbers the 

following inequality exists: 

 
2/12/12/1)( baba              (65) 

 

Therefore 

 
2/1

1

2/322/1

1

2/122/1

1

2 2)4()()4( TzzTzzzTzz   (66) 

 

Hence, due to inequality (48)  

 
2/1

1

22/1

1

2/322/1

1

2/32

1 )4/()22/32(/ TzTzTzzzT        (67) 

=
2/1

1

22/1

1

2/1

1

22/3 )4/()222/1( TzTTzz    

 

The numerator on the right hand side of (50) is 

 
22/12/1

1

4/32/1 ])2(2[  Tz  
  

0})4/()2{(2[/ 2/12/1

1

222/1

1

4/32/1

1   TzTzzT        (68) 

 

Hence, 

 

0/.// 11    ZZTT             (69) 

 

Corollary 1 to Theorem 2 

If  the probability of route failure increases up to 0.5 

then the value of 


2T  will increase provided that T2 is a 

fixed value. 

 

Corollary 2 to Theorem 2 

If  the probability of route failure increases up to 0.5 

then the value of Q will increase provided that Q is a 

fixed value. 

 

Theorem 3 

Suppose that k and k the probability of route 

failures are set such that 0/  kk   then by 

increasing k and k up to 0.5 the total elapsed time 

of the k
th

 route will decrease.  

 
Proof 

Let  

)1()1( 1

1 kk Nzz   
            (70) 

 

and  
 

)1()1( 1

2 kk Nzz   
            (71) 

 

The total elapsed time of the k
th 

route is 

















Ii

ji
Jj

ijkt

Ii
ji
Jj

ijktijkt

Ii
ji
Jj

ijkt

Ii
ji
Jj

k xzxzxxT
iijiij

2/122

2

2/122

1 }{}{                                           (72) 

 

Now, it is necessary to show that 0/  kkT   where 

 

kkkkkkkk zZTzzTT   /././/.// 2211
     (73) 

 

kz  /1
 and 

kz  /2
 are both less than zero because by 

increasing 
k  and k , (1-

k ) and (1-
k ) decrease 

and consequently )1()1( 1

1 kk Nzz     and 

)1()1( 1

2 kk Nzz     decrease. However, 

 

0}{/ 2/122

1  



Ii

ijk

ji
Jj

tk xzT
ij

             (74) 

 

0}{/ 2/122

2  



Ii

ijk

ji
Jj

tk xzT
i

            (75) 

 
0)()())()(())((/  kkT       Q.E.D. 

Theorem 4 

If the condition of theorem 3 exists for all NV truck 

routes then the total elapsed time of the whole system 

decreases. 

 
Proof 

According to theorem 3 the total elapsed time of each 

vehicle route decreases and thus it can be concluded 

that the total elapsed time of the whole delivery system 

will decrease since NV remains unchanged.  

 
Theorem 5 

For a SVRP having only probabilistic customer 

demands, if , the probability of route failure, increase 

up to 0.50 then the total travel distance of the whole 

delivery system will decrease. 

 
Proof 

To proof this theorem, the following, which is a 

mathematical model for a SVRP having only 

probabilistic customer demand and no time restrictions, 

is considered: 
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(P3)   Minimize 



 


N

i

N

ji
j

NV

k

ijkij XdD
0 0 1

           (76) 

 

S.t 

 
 










N

i

N
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N

ji
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ijkdk

N

ji
j

ijkd QXNX
ii

1 1 0

2/1221

0

))(1(   (77) 

 

SXX ijk  ][              (78) 

 

By setting 

)1(1

kNz  
             (79) 

 

0}{ 2/1

1

2

0

2  





N

i

ijk

N

ji
j

d XY
i

             (80) 

It will be noticed that 0/ 1  z because by 

increasing k , )1( k decreases and consequently 

)1(1

kN 
 decreases. Hence, Z.Y decreases and 

consequently, YZQQ .1   will increase. However, 

 

   /./.// zzQQDD            (81) 

 

It is obvious that .0/   YzQ  Hence, it remains 

to show that 0/  QD , this is because 

.0/./  ddzdzdQ  Now, it is only necessary to 

prove that in the deterministic VRP where customer 

demands are equal to their demand’s mean, by 

increasing the artificial capacity of truck the traveled 

distance will decrease. If the transportation cost 

depends linearly on the weight of goods delivered and 

the distance traveled, then the following equation can 

be used: 

 

ijijijij dWuC                             (82) 

 

Where 

uij = Cost per unit weight per unit distance from node i 

to node j 

 

Wij = Weight transported from node i to node j, 

 

dij = The distance from node i to node j 

 

rj = Number of times that weight Wij can be fitted in 

.Q  

However, 

 

ijiijij WuCd /               (83) 

and 

ijjWrQ                (84) 

 

Or 

jij rQW /               (85) 

 

Since, 

 1 

Xi =  

  0 

 

Then, 

D =  
 


 


 


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i

N
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N

ji
j
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ij

N

ji
j

ijk
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k

ij dXd
0 0 0 10 1

           (86) 

Or 

D =
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
N

i

N

j

ijj

NV

k

ij urC
0 0 1

0/             (87) 

 

Hence, 





 


N

i

N

ji
j

NV

k

ijjij urCQQD
0 0 1

2 0/}/1{/     (88) 

This result indicates that ,0/  QD which proves 

this theorem. Q.E.D. 

The following theorem concerns with the number of 

structured vehicle routes for the SVRP having 

probabilistic customer demands. It indicates that when 

number of constructed vehicle routes increases then the 

total demand to be served by the vehicle will increase. 

However, this situation will not happen when customer 

demands are deterministic. 

 

Theorem 6 

The larger number of routes is equivalent to the larger 

total demand to be served by all vehicles. 

 

Proof 

Suppose that i and 
2

i are the mean and variance of 

demand point i, it is clear that  





N

i

Ni uuuu
1

21 ...             (89) 

 

But, 

2/12/12/1

1

2 ...}{ Ni

N

i

i  


            (90) 

 

If only one vehicle can be used to deliver all customer 

demands, then the following inequality is needed: 
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
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i QNu
1

2/121
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}){1(             (91) 
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If two vehicles are used instead of one vehicle to 

deliver the customer demands, the following 

inequalities are needed: 

 










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i

i
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i
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and 

 


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
N

mi

i

N

mi

i QNu
1

2/121

1

}){1(             (93) 

 

Hence, after the addition of both sides of inequalities 

(92) and (93) the result is the following inequality. 

 

 
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N

mi

ii
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2/122/121
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2]}{})[{1(  (94) 

 

The left hand side of inequality (94) represents the total 

generated demands to be served by two vehicles. Using 

the concept of inequality (90), inequality (94) can be 

written in the following form: 

 


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i
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i
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1
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 
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 




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i

N
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The inequality (95) indicates that the total generated 

demand using two vehicles is larger than using one 

vehicle. However, one can extend the previous 

discussion for NV vehicles which are needed to satisfy 

all customer demands.  

Q.E.D. 

 
7. Conclusion 

This article presented the development of the 

mathematical formulation of the route construction 

stage and route improvement stage of the SVRP 

problem. The equivalent deterministic forms of 

problem “P1” and “P3” were developed and presented 

by “P2” and “P4” type problems, respectively. The 

existence of a set of deterministic linear time 

constraints which are equivalent to the nonlinear set of 

time constraints of the problem for distributions such 

as Poisson and Chi-Square is proved through theorem1. 

The effects of route failure probabilities on the total 

elapsed time of the whole delivery system were proved 

through theorems 2 to 4. Theory 5 illustrates that the 

total traveled distance decreases when route failure 

probability increases. Additionally, theorem 6 is 

provided to demonstrate that the larger number of 

vehicle routes is equivalent to the larger customer 

demands.  
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