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KKEEYYWWOORRDDSS                                  ABSTRACT 
 

 

A data envelopment analysis (DEA) method can be regarded as a 
useful management tool to evaluate decision making units (DMUs) 
using multiple inputs and outputs. In some cases, we face with 
imprecise inputs and outputs, such as fuzzy or interval data, so the 
efficiency of DMUs will not be exact. Most researchers have been 
interested in getting efficiency and ranking DMUs recently. Models of 
the traditional DEA cannot provide a completely ranking of efficient 
units; however, it can just distinguish between efficient and inefficient 
units. In this paper, the efficiency scores of DMUs are computed by a 
fuzzy CCR model and the fuzzy entropy of DMUs. Then these units are 
ranked and compared with two foregoing procedures. To do this, the 
fuzzy entropy based on common set of weights (CSW) is used. 
Furthermore, the fuzzy efficiency of DMUs considering the optimistic 
level is computed. Finally, a numerical example taken from a real-case 
study is considered and the related concept is analyzed. 
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11..  IInnttrroodduuccttiioonn

                                                

   
 Data envelopment analysis (DEA), which is a very 
useful management and decision tool, has found 
surprising development in theory and real-world 
applications. It was first developed by Charnes, et al 
[1], in which the traditional DEA model requires crisp 
input/output data. However, in real-world problems, 
inputs and outputs are often imprecise. Most of the 
previous studies dealing with imprecise inputs and 
outputs in DEA models have simply used simulation 
techniques [2 and 3]. The final efficiency score for 
each DMU was derived as a deterministic numerical 
value less than or equal to unity. In recent years, fuzzy 
set theory has been proposed as a way to quantify 
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imprecise and vague data in DEA models. Sengupta [4] 
was the first to introduce a fuzzy DEA model. The 
DEA models with fuzzy data ("fuzzy DEA" models) 
can more realistically represent real-world problems 
than the conventional DEA models. The fuzzy set 
theory also allows linguistic data to be used directly 
within the DEA models. 
Fuzzy DEA models take the form of fuzzy linear 
programming models. A typical approach to fuzzy 
linear programming requires a method to rank fuzzy 
sets and different fuzzy ranking methods may lead to 
different results [5]. The problem of ranking fuzzy sets 
has been addressed by many researchers [6 and 7]. 
The main aim of this paper is to explore the method of 
finding common set of weights (CSW) based on fuzzy 
entropy and ranking decision making units (DMUs) by 
the use of the fuzzy CCR model and fuzzy entropy. 
Entropy describes the fuzziness degree of the fuzzy set. 
Many scholars have studied it from different points of 
view. For example, De Luce and Termini [8] 
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introduced some axioms to describe the fuzziness 
degree of the fuzzy set. Kaufmann [9] proposed a 
method to measure the fuzziness degree of the fuzzy 
set by a metric distance between its membership 
function and the membership function of its nearest 
crisp set. Another way given by Yager [10] was to 
view the fuzziness degree of the fuzzy set in terms of a 
lack of distinction between the fuzzy set and its 
complement. Some authors have investigated interval 
valued fuzzy set and its some related topics. For 
example, Grzegorzewski [11] studied distance between 
interval valued fuzzy sets based on the Hausdroff 
metric. Burillo and Bustince [12] and Szmidt, et al [13] 
researched entropy of interval valued fuzzy set from 
different point of views, respectively. We can use each 
of mentioned ways in a particular situation, but the 
ranking by CSW is the best [14].  
In this paper, a procedure is suggested to find a CSW 
by the fuzzy entropy. In the proposed procedure first, 
the fuzzy entropy and a CSW are computed, and then 
the efficiency and ranking of each unit are determined. 
The rest of this paper is organized as follow. In 
Sections 2 and 3, we review the fuzzy DEA model and 
fuzzy entropy. In Section 4, we investigate the method 
of finding common set of weights (CSW) based on the 
fuzzy entropy. Finally, an illustrative example is 
presented in Section 5. 

 
2. Fuzzy DEA Model 

Fuzzy DEA models take the form of fuzzy linear 
programming models. Consider n DMUs; each 
consumes varying amounts of m different fuzzy inputs 
to produce s different fuzzy outputs. In the model 

formulation, 
~

0ix  (i=1,…,m) and 
~

0ry (r=1,…,s) denote 
the input and output values for DMU0, the DMU under 
consideration, respectively. The programming 
statement for the fuzzy duel CCR model is as follows: 
 
Model 1: 
 
min z θ=  
 s.t. 

~ ~

1
,

n

ip j ij
j

x x iθ λ
=

≥ ∀∑
                  (1) 

 
~ ~

1
,

n

rp j rj
j

y y rλ
=

≤ ∀∑
                           (2) 

 
0 .j jλ ≥ ∀                           (3) 

 
Among the various types of fuzzy numbers, triangular 
fuzzy numbers are of the most important. In the sequel, 
we consider the inputs and outputs of DMUs as 

triangular fuzzy numbers. Let ( )
~

, ,m l u
ij ij ij ijx x x x= and 

. The fuzzy CCR model is as 

follows: 
(

~
, ,m l u

rj rj rj rjy y y y= )

,

Model 2: 
 
min z θ=  
 s.t. 

1 1 1
( , , ) , ,

n n nm l u m l u

ip ip ip j ij j ij j ij
j j j

x x x x x xθ λ λ λ
= = =

⎡ ⎤
≥ ∀⎢ ⎥ i

⎣ ⎦
∑ ∑ ∑

  (4) 
 

1 1 1
( , , ) , ,

n n nm l u m l u

rp rp rp j rj j rj j rj
j j j

,y y y y y y rλ λ λ
= = =

⎡ ⎤
≤ ∀⎢ ⎥

⎣ ⎦
∑ ∑ ∑

       (5) 
 

0 .j jλ ≥ ∀                       (6) 
 
The  -cuts, also known as the  -level sets of 

~

ijx and 

, are defined by: 
~

ijy
 

{ }( ) | ( ) , ,
ij

m l u

ij x ij ij ijx x X x x x xα μ α ⎡ ⎤= ∈ ≥ = ⎢ ⎥⎣ ⎦
%

     (7) 
 

{ }( ) | ( ) , ,
rj

m l u

rj y ij ij ijy x X x x x xα μ α ⎡ ⎤= ∈ ≥ = ⎢⎣
% ⎥⎦            (8) 

 
Applying the  -level of the fuzzy DEA, the following 
model is achieved. 
 
Model 3: 
 
min z θ=  
s.t. 

( (1 ) , ( (1 )
m l m u

ip ip ip ipx x x xθ α α θ α α⎡ ⎤+ − + − ≥⎢ ⎥⎣ ⎦                (9) 
 

1 1
( (1 ) ), ( (1 ) ,

n nm l m u

j ij ij j ij ij
j j

x x x xλ α α λ α α
= =

⎡ ⎤
+ − + − ∀⎢ ⎥ i

⎣ ⎦
∑ ∑  

  
( (1 ) , (1 ) )

m l m u

rp rp rp rpy y y yα α α α⎡ ⎤+ − + − ≤⎢ ⎥⎣ ⎦            (10) 
 

1 1
( (1 ) ), ( (1 ) ,

n nm l m u

j rj rj j rj rj
j j

y y y yλ α α λ α α
= =

⎡ ⎤
+ − + − ∀⎢ ⎥ r

⎣ ⎦
∑ ∑   

 
0 .j jλ ≥ ∀                                  (11) 

 
To rank each unit, the least of inputs level and the 
much of outputs level compare with the weakest bound 
of efficiency. 
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u

The best part of DMUp in Equations (9) and (10) is 
( (1 ) , (1 )m l m

p p pX X Yα α α α+ − + − pY

l

) and the weakest 
part of bound is given by: 
 

1 1
( ( (1 ) ), ( (1 ) ))

n n
m u m

j j j j j j
j j

X X Y Yλ α α λ α α
= =

+ − + −∑ ∑  

 
Therefore, Model 3 is changed to Model 4. 
 
Model 4:  
 
min z θ=  
 s.t. 

1
( (1 ) ( (1 ) ,

nm l m u

ip ip j ij ij
j

x x x xθ α α λ α α
=

⎡ ⎤⎡ ⎤+ − ≥ + − ∀⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
∑ i

r
⎦

.

   (12) 

 

1
(1 ) ( (1 ) ) ,

nm u m l

rp rp j rj rj
j

y y y yα α λ α α
=

⎡ ⎤⎡ ⎤+ − ≤ + − ∀⎢ ⎥⎢ ⎥⎣ ⎦ ⎣
∑    (13) 

 
0j jλ ≥ ∀                                                        (14)  

 
Model 4 is a parametric linear programming problem, 
while  is a parameter. So the efficient units 
are completely ranked [15]. 

[ )0,1α ∈

 
3. Entropy Fuzzy 

In physics, the word entropy has important 
physical implication as the amount of "disorder" of a 
system, and in mathematics, a more abstract definition 
is used. 
Entropy is as a measure of probabilistic uncertainty. 
Concept of entropy has penetrated a wide range of 
disciplines, such as statistical mechanics, business, 
pattern recognition, transportation, information theory, 
queuing theory, linear and nonlinear programming and 
so on. To define entropy, Shannon (1948) proposed 
some axioms: (1) expansibility, (2) symmetry, (3) 
continuity, (4) maximum, (5) additivity, (6) 
monotonicity, (7) branching and (8) normalization. The 
Shannon’s entropy of a variable A (discrete set) is 
defined by: 

 
( ) ( ) ( ( ))H A p x Ln p= − ×∑ x                                 (15)  

 
where, p(x) denotes the probability distribution in the 
universal set X for all x X, and the entropy of a 
continuous probability distribution with the probability 
density function p(x) as: 

 
( ) ( ) ( ( ))H A p x Ln p x d= −∫

The first fuzzy entropy formula without reference to 
probabilities was proposed by De Luca and Termini 
[8], who defined the entropy using the Shannon's 
functional form. 

x

)

                               (16) 

 
( )(( ) ( ). ( ( )) 1 ( ) (1 ( ))A A A AH A x Ln x x Ln xμ μ μ μ=− − − −∑       (17) 

 
The measure of fuzziness H(A) can be regarded as 
"entropy" of a fuzzy set A. At a fixed element x, 
H( A(x))=h( A(x)) where the entropy function 
h:[0,1] [0,1] is monotonically increasing in [0,0.5] 
and monotonically decreasing in [0.5,1], moreover 
h(u)=0, as u=0 and 1; and h(u)=1, as u=0.5. Some well-
known entropy functions are shown by: 
 

12 [
2( )

12(1 ) [ ,1]
2

u u
h u

u u

⎧ ∈⎪⎪= ⎨
⎪ − ∈⎪⎩

0, ]
               (18)   

 
h(u) = 4u(1-u)                                                           (19) 

 
h(u)=-u.Ln(u)-(1-u)×Ln(1-u)                                    (20) 
 
where, the last is the Shannon's function. 

 
4. Entropy in DEA 

In most of the existing methods for possibilistic 
linear programming, where the  -cut is used, the 
solution is obtained by comparing the interval in the 
left and right hand side of the constraints.  
Different methodologies have been suggested for the 
comparison of the intervals. In some of these methods 
simply the end points of interval are considered for 
justification that makes the model very simple, and 
hence a lot of information might have been lost. In the 
others, the complexity of the algorithm may cause 
computational inefficiency DEA assigns an efficiency 
score less than one to inefficient DMUs and equal to 
one to efficient DMUs. So, for inefficient DMUs, a 
ranking is given; however, for efficient ones no 
ranking can be given. Some methods for ranking 
efficient DMUs with crisp data are developed. In this 
paper, by considering fuzzy DMUs, an alternative 
ranking method based on entropy of efficiency of 
DMUs as common set of weights is proposed.  
Charnes, et al [1] originally proposed data envelopment 
analysis (DEA) as a method for determining a set of 
weights for each decision making unit DMU. These 
sets of weights are, typically, different for each of the 
participating DMUs and, some of the weights may be 
assigned an exceedingly small value. 
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A possible answer to these difficulties lies in the notion 
of a CSW. In this paper, a procedure is suggested to 
find a CSW in the fuzzy entropy. This is done in six 
steps. A CSW is determined in the fifth step by 
computing the entropy [13 and 16]. 
 
Step 1: Consider m DMUs, each consumes varying 
amounts of s different fuzzy inputs to produce r 
different fuzzy outputs. In the presented model 
formulation, 1 2, ,..., mA A A , 

~
( 1, ,ij )x i = L s  and 

(j=1,…,r) denote DMUs, the j-th input value for 

the i-th unit, and the j-th output value for the i-th unit, 
respectively. 

,i s j
y

+
%

According to the input and output values of the DEA 
model, the decision making matrix is shown in Table 1. 
Let ( , )ij ij ijx a b=%  and are two positive 
LR fuzzy numbers. Then the operations {+ _ . │} are 
defined by: 

, ,( ,ij i s j i s jy a b+ +=% )

 

1 2 1 2 1 1 2 2( ) ( , )( )( , ) ( , )A B a a b b a b a b+ = + = + +% %      (21) 

 
1 2 1 2 1 2 2 1( ) ( , )( )( , ) ( , )A B a a b b a b a b− = − = − −% %       (22) 

 
1 2 1 2

1 1 1 2 2 1 2 2 1 1 1 2 2 1 2 2

, ,(.) ( )(.)( )
min( , , , ),max( , , , )

A B a a b b
ab ab a b a b ab ab a b a b⎡ ⎤⎣ ⎦

=
=

% %    (23) 

 
1 2 1 2 1 2 1 1 2 2 2 1

1 2 1 1 2 2 2 1

( ) ( , )( )( , ) [min( / , / , / , / ),
max( / , / , / , / )]

A B a a b b a b a b a b a b
a b a b a b a b

÷ = ÷ =% %    (24) 

 
Step 2: Calculate the normalized input and output 
values: 
 

~
~

~

1

1, ...,,ij
ij m

ij
i

j r
x

x
x

=

=′ =
∑

                          (25) 

 
Tab.1. Decision making matrix with fuzzy inputs and outputs 

 
~

1x  
… 

~

sx  
~

1 sy +  
… 

~

sry +  

1A  
~

11x  
… 

~

1 sx  
~

1,1 +sy  
… 

~

,1 rsy +

 

2A  
~

21x  
… 

~

2 sx  
~

1,2 +sy  
… 

~

,2 rsy +

 
… … … … … … … 

mA  
~

1mx  
… 

~

msx  
~

1, +smy  
… 

~

, rsmy +

 

 
~

~

~

,
1

1, ...,,ij
ij m

i s j
i

j r
y

y
y +

=

=′ =
∑

                    (26)  

 

For the above equations, fuzzy normalized inputs ijx ′%  
can be expressed by LR fuzzy numbers, 

[ , ]ij ij ijx a b′ ′′ ′′=% 1, 2, ...,j r=, , where,  

 

1

m

j i
i

a a
=

′ =∑ j
                                                                  (27) 

 

1

m

j i
i

b b
=

′ =∑ j
                                                                   (28) 

 
According to (24) we can obtain: 

[min( , , , )]ij ij ij ij
ij

j j j j

a a b b
a

b a b a
′′ =

′ ′ ′ ′                                      (29) 
 

 
[max( , , , )]ij ij ij ij

ij
j j j j

a a b b
b

b a b a
′′ =

′ ′ ′ ′                                         (30) 
 

Fuzzy normalized outputs ijy ′%  can be expressed by LR 

fuzzy numbers,  , , 
where, 

, ,[ , ]ij i s j i s jy a b+ +′ ′′ ′′=% 1, 2, ...,j r=

 
,

1

m

j s i j s
i

a a+ +
=

′ =∑
                                                             (31) 

 
,

1

m

j s i j s
i

b b+ +
=

′ =∑
                                                             (32) 
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, , , ,

, [min( , , , )]i j s i j s i j s i j s
i j s

j s j s j s j s

a a b b
a

b a b a
+ + + +

+
+ + + +

′′ =
′ ′ ′ ′             

(33) 
 

, , , ,
, [max( , , , )]i j s i j s i j s i j s

i j s
j s j s j s j s

a a b b
b

b a b a
+ + + +

+
+ + + +

′′ =
′ ′ ′ ′            (34) 

 
Step 3: Calculate

~

jE and 
~

j sE + values which are, 
respectively, the fuzzy entropy values of inputs and 
outputs. 
 

~ ~ ~

1

1 . ( ) ; 1,...,    
( )

m

j ij ij
i

E x Ln x j
Ln m =

⎛ ⎞′ ′= − =⎜ ⎟⎝ ⎠∑ r  (35) 

 
~ ~ ~

, ,
1

1 . ( )   ; 1,...,
( )

m

j s i j s i j s
i

E y Ln y j
Ln m+ + +

=

⎛ ⎞′ ′= − =⎜ ⎟⎝ ⎠∑ r   (36) 

 
From Equation (35), the fuzzy entropy values for the 
LR fuzzy inputs [ , ]j j jE α β′ ′=% , j=1,2,…,r , as follows: 
 
( , ) ln( , )j j ja b a b∗ ∗ ′′ ′′= j                                            (37) 
 

[min( , , , )]j j j j j j j j ja a a b b a b bα ∗ ∗ ∗ ∗′′ ′′ ′′ ′′=                 (38) 
 

[max( , , , )]j j j j j j j j ja a a b b a b bβ ∗ ∗ ∗ ∗′′ ′′ ′′ ′′=                 (39) 
 

1

1
ln( )

m

j j
im

α α
=

′ = − ∑
                                       (40) 

 

1

1
ln( )

m

j j
im

β β
=

′ = − ∑
                                       (41) 

 
Now set [ , ]j s j s jE α β+ + +′ ′=%

s , j=1,2,…,r, as follows: 
 
( , ) ln( , )j s j s j s j sa b a b∗ ∗

+ + + +′′ ′′=                                           (42) 
 

[min( , , , )]j s j s j s j s j s j s j s j s j sa a a b b a b bα ∗ ∗ ∗
+ + + + + + + + +′′ ′′ ′′ ′′= ∗

∗
+

          (43) 
 

[max( , , , )]j s j s j s j s j s j s j s j s j sa a a b b a b bβ ∗ ∗ ∗
+ + + + + + + +′′ ′′ ′′ ′′=    (44) 

 

1

1
ln( )

m

j s j s
im

α α+ +
=

′ = − ∑
                                            (45) 

 

1

1
ln( )

m

j s j s
im

β β+ +
=

′ = − ∑
                                            (46) 

Step 4: Now calculate the deviation of entropy from 
one: 
 

~
1jd = −

~

jE

~

        , j=1,2,…,r                                     (47) 
 

~
1j sd E+ = − j s+    , j=1,2,…,r                                    (48) 

 
For the LR fuzzy numbers, (49) and (50) are presented 
as follow: 
 

1, ...,[1 ,1 ] [ , ] ; j j j j j j rd β α α β =′ ′ ′′ ′′= − − =%      (49) 
 

 
1,...,[1 ,1 ] [ , ]  ; j s j s j s j s j s jd β α α β+ + + + + =′ ′ ′′ ′′= − − =% r    (50) 

 
Step 5: Calculate the CSW of input and output values: 

~
~

~ ~

1 1

, 1, 2,...,

j s

i
j s r

j
j j

dw i
d d

+
= =

= =
+∑ ∑

r s+  

(51) 

 

By LR fuzzy numbers we can obtain, [ , ]j j jw δ θ=% , 
j=1,…,r, as follows: 

1 1

s r

j j
j j

α α α∗
+

= =

′′ ′′= +∑ ∑ j s

j s

 

(52) 

1 1

s r

j j
j j

β β β∗
+

= =

′′ ′′= +∑ ∑
 

(53) 

[min( , , , )]j j j j
j

j j j j

α α β β
δ

β α α β∗ ∗ ∗ ∗

′′ ′′ ′′ ′′
=

 

(54) 

[max( , , , )]j j j j
j

j j j j

α α β β
θ

β α α β∗ ∗ ∗ ∗

′′ ′′ ′′ ′′
=

 

(55) 

 
The weights for i=1,…,s and i=s+1,…,s+r are the  
input and output weights, respectively. 
 
Step 6: Calculate the efficiency values for each units: 
 

~ ~

,~
1

~ ~

1

r

j s i j s
j

i s

j ij
j

w y
z

w x

+ +
=

=

′
=

′

∑

∑
 ,                   (56) 1, 2, ...,i = m
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 Table 2 illustrates an example of a metallurgy 
factory located in Iran with two fuzzy inputs and two 
fuzzy outputs. Table 3 lists the fuzzy efficiencies 
obtained from Model 4 for different   values. 

Finally, by LR fuzzy numbers we can obtain 
[ , ]j j jz ϕ σ=% , j=1,…,r, by: 

 
, , ,[min( , , ,j s j s i j s j s i j s j s i j s j sa b aδ δ δ θ θ+ + + + + + + +′ ′′ ′′ ′′=

,  1, ...,i m=
(57) 

, , ,[max( , , ,j s j s i j s j s i j s j s i j s ja b aθ δ δ θ θ+ + + + + + +′ ′′ ′′ ′′=
,  1, ...,i m=

(58) 

1, ...,[min( , , , )] , j j ij j ij j ij j ij ia b a bδ δ δ θ θ =′ ′′ ′′ ′′ ′′=

Tab. 2. DMUs with two fuzzy inputs and two fuzzy 
outputs 

DMU X1 X2 Y1 Y2 
1 (2.2,3.2,4.2) (2.6,3.6,4.6) (1.7,2.7,3.7) (2.3,3.3,4.3) 
2 (1.7,2.7,3.7) (2.1,3.1,4.1) (0.8,1.8,2.8) (1.4,2.4,3.4) 
3 (1.6,2.6,3.6) (2.5,3.5,4.5) (1.6,2.6,3.6) (2,3,4) 
4 (2.4,3.4,4.4) (2.4,3.4,4.4) (1.1,2.1,3.1) (2.4,3.4,4.4) 
5 (2.8,3.8,4.8) (2,3,4) (1,2,3) (3,4,5) 
6 (1.7,2.7,3.7) (3,4,5) (0.4,1.4,2.4) (2.8,3.8,4.8) 
7 (0.5,1.5,2.5) (1,2,3) (0.5,1.5,2.5) (1,2,3) 
8 (1,2,3) (2,3,4) (1,2,3) (2,3,4) 
9 (3,4,5) (2,3,4) (3,4,5) (3,4,5) 

m
 

(59) 

1, ...,[max( , , , )] , j j ij j ij j ij j ij i ma b a bθ δ δ θ θ =′ ′′ ′′ ′′ ′′=
1, 2, ...,i m=  

(60) 
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=
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Tab. 3. Efficiency of DMUs 

DMU  =0.1  =0.5  =0.9 
1 2.3592 1.8424 1.1480 
2 3.4174 2.6086 1.4096 
3 2.0994 1.6680 1.1283 
4 2.0092 1.6211 1.1289 
5 1.9171 1.5795 1.1282 
6 1.8465 1.5399 1.1273 
7 2.8115 2.25 1.356 
8 2.1717 1.7777 1.1900 
9 1.9385 1.6024 1.3617 

s
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(66) 

 
To evaluate the entropy of illustrated DMUs, we make 
interval inputs and outputs and then Equations (35) and 
(36) are used. Table 4 lists the results the computed 
fuzzy entropy. 
Entropy figures out the uncertainty and fuzziness of 
score efficiency of DMUs; therefore, the sums 
concluded of entropy will be more for DMUs having 
higher or lower efficiency. Thus value entropy is not 
able to rank DMUs; however, when entropy uses to 
make CSW results suitable ranking for DMUs. The 
preference expectations of the fuzzy efficiency of 
DMUs with use CSW, Equation (56), and different 
valuation of optimistic levels are listed in Table 5. 
Ranking of DMUs by the fuzzy entropy method and 
fuzzy CCR model is shown in Tables 6 and 7, 
respectively. By comparing these tables, the fuzzy 
entropy method presents the unit 5 as the most efficient 
unit in level  =0.1 and  =0.5; while under fuzzy CCR 
model, the unit 2 in all level is the most efficient unit. 

 
So, this method can produce a complete ranking of 
units that is more practical. 
 

5. Numerical Example 
 

Tab. 4. Entropy of DMUs 

DMU E1 E2 E3 E4 

 =0.0 (0.3103,2.7603) (0.3611,2.4881) (0.9161,3.8214) (0.3626,2.4634) 
 =0.1 (0.3548,2.4764) (0.4047,2.2635) (0.2414,3.2866) (0.4061,2.2426) 
 =0.5 (0.5755,1.6342) (0.6166,1.5662) (0.4815,1.8868) (0.6167,1.556) 
 =0.9 (0.8864,1.0891) (0.9055,1.0889) (0.8539,1.1152) (0.9031,1.0846) 



R. Tavakkoli-Moghaddam & S. Mahmoodi         FFiinnddiinngg  aa  CCoommmmoonn  SSeett  ooff  WWeeiigghhttss  bbyy  tthhee  FFuuzzzzyy  EEnnttrrooppyy  …                   87  

 
 
 
 
 

Tab. 5. Fuzzy efficiency of DMUs with different   
DMU  =0.1  =0.5  =0.9 

1 (-3.06135,1.6472) (-2.0699,1.4005) (-1.482,1.2782) 

2 (-3.0865,1.4070) (-1.7202,1.1639) (-1.1852,1.0222) 

3 (-4.1154,1.8760) (-2.3934,1.6793) (-1.7466,1.5064) 

4 (-2.8712,1.3088) (-1.5956,1.0795) (-1.0979,0.9469) 

5 (-2.5393,1.1575) (-1.3915,0.9415) (-0.9405,0.8111) 

6 (-2.6293,1.1985) (-1.4211,0.9615) (-0.9357,0.8070) 

7 (-4.1154,1.8760) (-2.3934,1.6193) (-1.7466,1.5064) 

8 (-4.1154,1.8760) (-2.3934,1.6193) (-1.7466,1.5064) 

9 (-4.1154,1.8760) (-2.3934,1.6193) (-1.7466,1.5064) 

 
Tab. 6. Ranking order for the nine DMUs by the 

fuzzy entropy method 
DMU  =0.1  =0.5  =0.9 

1 5 5 5 
2 4 4 4 
3 8 8 8 
4 3 3 3 
5 1 1 2 
6 2 2 1 
7 6 6 6 
8 9 9 9 
9 7 7 7 

 
Tab. 7. Ranking order for the nine DMUs by the 

fuzzy CCR model 

DMU  =0.1  =0.5  =0.9 

1 3 3 4 
2 1 1 1 
3 5 5 7 
4 6 6 6 
5 8 7 8 
6 9 8 9 
7 2 2 2 
8 4 4 3 
9 7 7 5 

 
Since the data base is in fuzzy so we should use the 
fuzzy system. From another point of view, the less 
fuzziness, the less ambiguity will be made. Thus, it is 
better to choose the shorter interval in the fuzzy 
entropy because of the decreasing of fuzziness 
(according to this, the ranking of units is made in Table 
6). When α-cuts increase in this model, the interval of 
data will be shorter; so, α=0.9 is the optimistic and 
recommended level to managers (see Table 5 in 
Section 5). Also in the CCR model, the sets of the 
weights are typically different for each of the 
participating DMUs, and in some cases it may be 
considered unacceptable where the same factor is 

accorded widely differing weights. Thus, it is 
important to find a common set of weights (CSW). 
According to this entropy, the model is proposed. So 
by comparing of two methods, the entropy method is 
more stable. 

 
6. Conclusion 

Since the efficiency is fuzzy in standard data 
envelopment analysis models with fuzzy data, it is 
difficult to rank the efficiencies. In this paper, two 
methods to rank efficient and inefficient DMUs are 
suggested, which one of them is more stable comparing 
with the other methods. The first method based on the 
fuzzy CCR model, by a little modification, could 
measure the efficiency of units and rank them 
completely. The second method was the fuzzy entropy 
based on the common set of weights (CSW). Defining 
the CSW, the efficiency was measured and contrasted. 
One of the most significant advantages of this method 
was the compatibility and stability of which in ranking. 
Regarding the   index, the manager's opinion to 
measure efficiency has been considered as well. From 
the other point of view if the manager's opinion is 
changed and considered as a parameter in the presented 
model, we can examine the opinion in future research. 
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