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KKEEYYWWOORRDDSS                                  ABSTRACT 
 

Location-allocation of facilities in service systems is an essential 

factor of their performance. One of the considerable situations which 

less addressed in the relevant literature is to balance service among 

customers in addition to minimize location-allocation costs. This is an 

important issue, especially in the public sector. Reviewing the recent 

researches in this field shows that most of them allocated demand 

customer to the closest facility. While, using probability rules to 

predict customer behavior when they select the desired facility is more 

appropriate. In this research, equitable facility location problem 

based on the gravity rule was investigated. The objective function has 

been defined as a combination of balancing and cost minimization, 

keeping in mind some system constraints. To estimate demand volume 

among facilities, utility function(attraction function) added to model 

as one constraint. The research problem is modeled as one mixed 

integer linear programming. Due to the model complexity, two 

heuristic and genetic algorithms have been developed and compared 

by exact solutions of small dimension problems. The results of 

numerical examples show the heuristic approach effectiveness with 

good-quality solutions in reasonable run time. 

. 
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11..  IInnttrroodduuccttiioonn


  

Consider a location problem of some similar 

facilities in a geographical region. Suppose an 

incomplete capacity is costly, then all customers’ 

demand should be covered by the facilities in a fair 

way. The location problem in this case, is equivalent to 

find places that in addition to minimize costs of 

establishment and handling, minimize the demand 

volume in the busiest facility.  
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One of the important aspect of spatial interactions in 

location science is to predict customer behavior when 

they select a service system. Most models use 

proximity rule to estimate the demand flow, which is 

based on that each demand point selects only one 

facility by ignoring others.  

This assumption cannot correctly describe customer 

behavior because customers willing to receive service 

from the most attractive facility. So, we consider 

locating of similar facilities to meet customer needs so 

that demand allocating to the attractive facilities. This 

problem named as GBELP (Gravity-based Equitable 

Load Problem) and the objective of it is to minimize 
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Facility location;  

Equitable load;  

Gravity model;  

Heuristic algorithm;  

Genetic algorithm;  

Integer programming 
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two measures namely, the maximum demand of each 

facility and the costs of location-allocation. 

Literature review of research problems involves a 

probabilistic model for predicting a customer behavior 

and equity problem.  

Employing gravity models in spatial interaction 

analysis is common, so we use this model for 

estimating people interactions accurately. Gravity 

model was first proposed by Reily in 1931. Assuming 

that a customer is in one middle town near to two 

major cities, the probability of selecting one city has 

direct relation with city size and inversely proportion to 

distance. In this model, a decreasing function of 

distance was defined as the square of distance between 

customer and the city [1]. Huff [2,3] used Reily’s 

gravity model probability, to model the market share in 

competitive conditions and proved that a probability of 

selecting one shop by a customer has  directly 

proportion to shop area and inverse ratio by some 

powers of its distance. When the power is infinitive, 

the customer selects the nearest shop with the 

probability of “1” [4].  

Wilson [5] and Hojson [6] proposed the exponential 

function instead of polynomial form and Bell et.al [7] 

offered other functions. Drezner and Drezner [8-11] 

and Fotheringham [12, 13] analyzed different 

distributions of demand with random and uniform 

utility functions in the gravity model. MacFeiden [14] 

also created one discrete selection model as 

“polynomial logit” to predict a population behavior in 

an economic field.  

Over the years, gravity rule has been used for solving 

problems in many areas such as geography (Lowe and 

Sen[15], Haynes and Fotheringham [16]), 

transportation planning (Evans [17], Erlander& Stewart 

[18]), marketing (Huff [20], Huff and Roland [19]) and 

particularly in location studies. For instance, Drezner 

and Drezner [20] and Eiselt and Marianov [21] applied 

it in hub location, Drezner and Drezner [5, 22] in 

median problem, O’kelly and Storbeck [24] in 

hierarchy location-allocation problem and Cokokaydin 

et.al [25] in competitive facility location. 

Parallel to the development of this body of literature, a 

new field of research on location modeling was 

growing with equity objectives. Baron et.al [26] 

analyzed the problem of optimal location of a set of 

facilities in the presence of stochastic demand and 

congestion.  

Galvao et.al [27] presented load balancing and capacity 

constraints in a hierarchical location model. Surana 

et.al [28] studied load balancing in dynamic structured 

peer-to-peer systems. Baatar and Wiecek [29] advance 

equitability in multi-objective programming and 

strengthen the concept of Pareto efficiency by 

additionally requiring that the objective function be 

anonymous and satisfy the principle of transfers. 

Drezner and Drezner [30] investigated equity models 

in planar location.  

In other papers [31],Researchers considered location 

model with two objectives: minimizing total distance 

traveled by customers and the variance of total demand 

attracted to each facility Baron et.al [32] considered the 

problem of locating facilities on the unit square so as to 

minimize the maximal demand faced by each facility 

subject to closest assignment and coverage constraints. 

Suzuki and Drezner [33] analyzed the minimum 

equitable radius location problem satisfying continuous 

area demand.  

Berman et.al [34] studied network location such that 

the weights attracted to each facility will be as close as 

possible to one another. Puerto et.al [35] investigated 

extensive facility location problems with equity 

measures on networks. Objective functions measure 

conceptually related to the variability of the 

distribution of the distances from the demand points to 

a facility. Drezner et.al [36] locating facilities with 

equity considerations, namely, minimizing the Gini 

coefficient of the Lorenz curve based on service 

distances.  

Properties of the Gini coefficient in the context of 

location analysis are investigated both for demand 

originating at points, and demand generated. Kostreva 

et.al [37] studied the concept of equitably efficient 

solutions (Equitable aggregations) to multiple criteria 

linear and non-linear optimization problems. Mesaa 

et.al [38] considered single facility location problems 

with equity measures, defined on networks. Galvao et 

al. [39] discuss practical issues in location problems of 

balancing loads of health-care facilities. Moreover, 

Kim and Kim focus on the problem of determining 

locations for long-term care facilities with the objective 

of balancing the numbers of patients assigned to the 

facilities.  

Berman and Drezner and Baron et.al analyzes a 

location problem of similar facilities with a common 

service rate on one queue system [40, 41]. 

Based on existing literature, the related research about 

balancing workloads problem on the networks was 

presented by Berman et.al [34]. So, we selected it as 

the base paper of our study.  

The contribution of our research is focusing on 

improving the solutions of this problem: location 

objective defined as the combination of decreasing 

establishment and transportation costs, besides fair 

distribution of demands among serving facilities. 

Client network supposed to have general form (not just 

tree). In demand allocation not only the proximity is 

important but also different desirability/undesirability 

factors be considered as important measures. So the 

probability of server selection defined as a function of 

the estimated attractiveness of each facility, distance, 

and current demand on it.  

Heuristic and meta- heuristic approaches, in addition to 

the exact method, were used  to solve the research 

problem.  Findings show a very good efficiency 

according to the computational results. 
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2. GBELP
2
 Model 

2-1. Customer Behavior 

The flow rate between facilities ( ) estimated by 

the gravity rule, . The expression often used for 

decreasing function of distance, is polynomial, 

( , in most applications) or 

exponential, . Distance effect will be 

different depending on the network structure. Erdog  

shows that results are not sensitive to distance function 

selection [42]. Huff proved distance effect by “product 

type” in practice. Distance function here defined as 

polynomial function , according 

to spatial position of point i and facility j. 
 

2-2. Notation 

The required sets, parameters and decision variables 

are as Tab. 1: 
 

Tab. 1.Model notation 
Set of demand points and also set of candidate 

locations for facilities. 

I= {1, …, n} 

Set of located facility. J= {1, …, m} 
Demand points index. i 

Facilities index. j 

Number of demand points. n 
Maximum number of facilities depends on the 

investment policy; . 

m 

Node weight (demand rate) of point i. 
 

Current allocated demand to facility j. 
 

The average capital cost to establish facility on the 

candidate node j, which may be different for each 

point; . 

 

The estimated matrix of flow from demand point i 

to facility at j. 

G

 

The matrix of handling costs from demand point i 
to facility at j. 

C

 

The matrix of distances between network nodes. 
Other criteria: “navigations”, “travel time”, “travel 

expenses”. 

D

 

The factor that the distance increased by it and 
determined empirically. 

α 

A very large amount that can be considered 

as . 

M 

The n n matrix of facility attractions, in each row 

further  is more interest facility at j for demand 

point i. 

A

 

The maximum of allocated demand between all 
facilities. (The maximum load of facilities)  

 

 

 

 

2-3. Problem Formulation 

The integer programming of GBELP is as follow: 

                                                 
2Gravity-based Equitable Load Problem ; GBELP  

                                     (1) 
 

                (2) 
 

Subject to 

     (3) 

 

                                                   (4) 
 

  (5) 
 

 (6) 

 

(7) 
 

   (8) 
 

   (9) 
 

The objective function and constraints (3) ensure 

the minimax criterion, balancing the workloads. 

Equation (2) is the second objective function, in it 

the first expression is the establishment cost of 

facility in location j and the second expression is 

handling cost of customer from demand point I to 

facility j. In constraints (3), demands allocated to 

each facility by attraction function. The maximum 

value of allocated demand was in order as the 

maximum load ( ).  

Constraints (4) ensure that the number of facilities 

does not exceed from the specified value of m. 

Constraints (5), states that each node is assigned to 

one facility.  

Constraints (6) ensure that the node  cannot serve 

node  unless there is a facility located at node . 

Relations (8) and (9) show problem variables’ 

range. We prove that constraints (7) guarantee that 

each node is assigned to a closest facility. Let 

. For  (7) is always true, because 

.  

By (5)  and therefore, the sum on the left 

hand side of (7) can be written as 

(10). If , for 

, constraint (10) will be violated for 

. Therefore,  can be equals to 1 

only for  being the minimum distance. 

If U (x,y) and V (x,y) were the  efficiency and equity 

of one location pattern, , respectively, in which x,y is 

vector of decision variables, Then: 
 

                                       (11) 

 

                   (12) 

 
The above yardsticks not measured in the same unit.  

So,  it is  necessary  to  scale  them,  so  that  they  can  

be  converted  to  a  common  merit currency. We used 
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weighted metric method for this job.  and 

 are  considered as the minimum of each 

yardstick in the absence of another. We can define such 

a function that could measure deviation from optimal 

solutions: 

 

                                             (13)  

 

                                             (14) 

 

The  converted  efficiency  and  equity  measures,  

weighted  by  an  appropriate  coefficient,  are 

combined  to  formulate  the  model's  objective  

function ( ): 

 
  

       (15) 

 

λ  represents a weight assigned to each measure that 

between 0 (completely efficient) and 1 (completely 

equitable). Parameter p can take any value between 1 

and ∞. The value of  p determines emphasis on 

deviations from optimal solution, such that greater 

value has more emphasis on variation. 

 

3. Solution Approaches 

When all the attractiveness are equal and location-

allocation cost is not considered, problem will change 

to ELP model which its complexity has been discussed 

by Berman et.al [34]. Let G = (V, E) be an undirected, 

connected graph with node set and 

edge set . If all 

the distances between pairs of nodes are distinct, then 

for each subset M of m nodes there is only one feasible 

assignment. Therefore, by considering the 

subsets of m nodes, problem ELP can be 

solved by complete enumeration in  

time on a general network and in particular, ELP is 

polynomially solvable for any fixed value of m. They 

observed that when m is variable and determine by 

solving problem (the case considered in this article); 

ELP is strongly NP-hard even for a star tree [44]. 

Given that the basic problem is in NP-hard class and its 

complexity increases by solution expanding and multi 

objective function. So it’s necessary to use a powerful 

heuristic or meta-heuristic algorithm. In this research, 

we create both approaches in solving GBELP on the 

network. 

 

3-1. Heuristic Algorithm 

In this algorithm, instead of global searching in 

solution space and counting methods, branches of the 

search tree which are more likely to produce the 

desired output are selected. This property causes  very 

good solutions at low run time. 

We assume that the population volume is the most 

important factor in customer selection. Consider this as 

a measure, in addition to facility attraction, 

establishment cost and sum of its distance to other 

nodes.  

So the gravity force of the facility in j, , can be 

calculated by:   (16).   is the establishment 

cost and   is current population volume in node j. 1 is 

added to the denominator to prevent an infinite gravity 

force when  . Final expression for determining 

gravity force of facility j is as follow: 

 (17). 

 
i. Input 

The node attractiveness for locating facility ( ), 

establishment cost ( ), the maximum number of 

facilities (m), the demand of each node ( ), the 

distance between nodes ( ) and the unit cost of 

handling between them ( ), are the inputs. 

 

ii. Shortest Paths 

Dijkstra's algorithm, conceived by Dutch computer 

scientist Edsger Dijkstra in 1956 is a graph search 

algorithm that solves the single-source shortest path 

problem for a graph with nonnegative edge path costs, 

producing a shortest path tree. This algorithm is often 

used in routing and as a subroutine in other graph 

algorithms. 

Let the node at which we are starting be called 

the initial node. Let the distance of node Y is the 

distance from the initial node to Y. Dijkstra's algorithm 

will assign some initial distance values and will try to 

improve them step by step. 

1. Assign to every node a tentative distance value: set 

it to zero for our initial node and to infinity for all 

other nodes. 

2. Mark all nodes except the initial node as unvisited. 

Set the initial node as current. Create a set of the 

unvisited nodes called the unvisited set  consisting 

of all the nodes except the initial node. 

3. For the current node, consider all of its unvisited 

neighbors and calculate their tentative distances. 

For example, if the current node A is marked with a 

distance of 6, and the edge connecting it with a 

neighbor B has length 2, then the distance to B 

(through A) will be 6+2=8. If this distance is less 

than the previously recorded distance, then 

overwrite that distance. Even though a neighbor has 

been examined, it is not marked as visited at this 

time, and it remains in the unvisited set. 

4. When we are done considering all of  the neighbors 

of the current node, mark the current node as 

visited and remove it from the unvisited set. A 

visited node will never be checked again; its 

distance recorded now is final and minimal. 

http://en.wikipedia.org/wiki/Computer_scientist
http://en.wikipedia.org/wiki/Computer_scientist
http://en.wikipedia.org/wiki/Edsger_Dijkstra
http://en.wikipedia.org/wiki/Graph_search_algorithm
http://en.wikipedia.org/wiki/Graph_search_algorithm
http://en.wikipedia.org/wiki/Shortest_path_problem
http://en.wikipedia.org/wiki/Shortest_path_problem
http://en.wikipedia.org/wiki/Graph_(mathematics)
http://en.wikipedia.org/wiki/Edge_(graph_theory)
http://en.wikipedia.org/wiki/Shortest_path_tree
http://en.wikipedia.org/wiki/Routing
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5. The next current node will be the node marked with 

the lowest (tentative) distance in the unvisited set. 

6. If the unvisited set is empty, then stop. The 

algorithm has finished. Otherwise, set the unvisited 

node marked with the smallest tentative distance as 

the next "current node" and go back to step 3. 
 

iii. Utility Fraction 

To prioritize locations a Utility fraction, 

 (18), calculated for n 

nodes.  are the total distance and the total 

handling cost of node i to the other points, respectively. 

 
iv. Maximum Iteration (Stop Condition) 

In this step, the iteration number determined based on 

the m value. If  , algorithm achieves to 

acceptable solution by check all possible cases and in 

one iteration (k=m, MaxIt=1). Otherwise, the interval 

[1,m] divided into four equal parts and for each of 

these four values objective function calculated. We 

considered two lowest values and assuming the 

solution between these four objective functions. So this 

interval divided into four parts, again. This procedure 

repeated until a stop condition satisfied (k=linspace (1, 

m, 4), MaxIt= 2m-50). 

 
v. Main Loop 

The main loop computes the values of “Cost, 

Maximum Load, Facility Locations, and Compound 

Objective Function” and save them. Then it 

investigates the combinations which more likely is 

better solutions, depending on its utility fractions. Thus 

the problem solved in a shorter run time than the exact 

method. 

 
vi. Output 

The algorithm is stopped after a certain iteration 

number (MaxIt) and finds the lowest objective 

function, and returns its value with associated 

maximum loads, cost and facility locations. 

 

 
Fig. 1. The general structure of the Heuristic algorithm 

 

0 1 0 0 0 0 1 . . . 1 0 1 1 1 1 0  1 1 0 1 1 0 0  

  

Fig. 2. An example of GBELP chromosome 
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3-2. Genetic Algorithm (GA) 

i. Basic Parameters and Inputs 

The node attractiveness for locating facility ( ), 

establishment cost ( ), the maximum number of 

facilities (m), the demand of each node ( ), the 

distance between nodes ( ) and the unit cost of 

handling between them ( ). 

 
ii. Initial Population 

Algorithm begins with an initial population of 

solutions. Each solution displayed as a “chromosome” 

and all chromosomes encoding by an appropriate code 

system. This code contains specific information: 

1. Chromosome Location: A string of binary 

numbers with n dimension. 

2. Fitness Function: The objective function of 

associated chromosome. 

After the chromosome definition, a certain number of 

them (nPop) created randomly. nPop determined in a 

way that almost all solutions in a search space, have a 

chance to produce.  

 
iii. Fitness Function 

Solution evaluation done by a compounded function, 

. So less objective functions have a further 

fitness. 

 

iv. Reproduction (Selection) Operator 

Some chromosomes randomly select from population 

for reproduction. In the proposed GA, we used roulette 

wheel method for this selection. The probability of 

chromosome selection i calculated depending on its 

fitness, by equation (19): 

 

                                                       (19) 

 

 is the objective function of chromosome j and  

is the maximum of this function between all associated 

solution.  is a control parameter for chromosome 

selection (intensity parameter) and tuned in such a way 

that a half of chromosomes probability selection was 

80%. 

 
v. Crossover Operator 

The crossover operator we used here is uniform. First 

two chromosomes selected and then one random 

chromosome with binary values created. One binary 

random distribution determined that each gens of 

children should pick from parents’ gen. So children 

created by equations (20) and (21). 

 
                                        (20) 

 

                                        (21) 

and are first and second parents, and  and  

are gens of children, respectively. Also, , are gens of 

random chromosome. Crossover operator shown in 

Figure 3. 

 
1 1 0 1 1 0 0 Parent 1 

        

1 0 1 1 1 1 0 Parent 2 

        

1 1 0 1 0 1 1 
Random 

Chromosome 

        

1 1 1 1 1 0 0 Child 1 

        

1 0 0 1 1 1 0 Child 2 

Fig. 3.Crossover Operator. 

 

vi. Mutation Operator 

Mutation operator applies on chromosomes in order to 

prevent local optimum. We used the reversed mutation 

method in which one chromosome selected randomly 

and replaced by inverse value of it (Figure 4). This 

strategy prevented from too many changes in solutions. 

 
0 1 0 0 0 0 1 Parent 

5 
Random Number between  

1 and n 

0 1 1 0 0 0 1 Child 

 

Fig. 4.Mutation Operator. 

 
vi. Merge Populations 

The new population combines with previous 

population and makes a new generation. 

 
vii. Merge Populations 

By producing children, we should define a method to 

determine which member of the current population 

should be eliminated and which children should be 

replaced with them. This method effects on 

convergence of genetic algorithm [44]. All 

chromosomes in three populations sorted by their 

fitness and the bests of them selected as the 

chromosome number of the first population, for new 

generation.  

 
iix. Stop Condition 

Stop condition defined as achieving the maximum 

number of the generation production with the best 

population fit. 

 
4. Computational Results 

4-1. Numerical Examples 

In this section the performance of the proposed 

algorithms is evaluated by using randomly generated 

instances with different problem sizes and other 

parameters. The basic parameters are generated as Tab. 
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2. Here the notation U(a,b) means a uniform 

distribution in the interval [a,b] and Rnd(c,d) 

represents an integer random choice between c and d. 

Fourteen problem sets are generated in order to 

evaluate the performance of the algorithms. So these 

instances of the problem are tested for basic 

parameters. We divided the instances into two 

categories: small scale (less than 40 customers), 

medium and large scale (more than 50 customers). To 

validate the model, random instances solved with 

GAMS 23.4 , although this software is only able to 

solve the small size problems. 

 

4-1. Solving Results and Comparison 

The proposed algorithms are coded in MATLAB 

program and have been performed on a CPU of 2.2 

GHZ and Windows 7. With the notations in Table 3, 

the results are given in Table 4. 

 
Tab. 2. Random Generated Parameters 

Distribution Parameter 

First we consider 

m=n 
 

Matrix  
Maximum Number 

of facilities 

 
 

Matrix  
Node Demand 

 

 

Matrix  
Establishment Cost 

 

 

Matrix  
Attractiveness 

 

 

Matrix  

Distance between 

Locations 

 

 

Matrix  

Handling Cost 

between Locations 

 
Tab. 3. Notation used in numerical results. 

   Symbol 

 
Computation time 

(in second)  

E
x
a

c
t 

M
e
th

o
d

 

in
d

ic
a

to
r
s 

Optimal number of facilities 

Objective Function 
 

Allocated Maximum 

Load  

 

Total Costs 

(Establishment &  

Handling Costs) 
 

010*

 

Computation time 

(in second)  

H
eu

ri
st

ic
 A

lg
o

ri
th

m
 

in
d

ic
a

to
r
s Objective Function 

 

Allocated Maximum 

Load  

Total Costs 

(Establishment &  

Handling Costs) 
 

 

Computation time 

(in second)  

G
en

et
ic

 

A
lg

o
ri

th
m

 

in
d

ic
a

to
r
s 

Objective Function 
 

Allocated Maximum 

Load  

Total Costs 

(Establishment &  

Handling Costs) 
 

To compare the proposed approaches some charts 

plotted based on Table 3. Computation Time (CT), 

Objective Function (Z) and Number of Function 

Evaluations (NFE) were compared with each other 

(Figures 5-7). We can conclude the following results: 

 
1. Exact method computation time increased rapidly 

by problem dimension, while this increasing is very 

slow for GA and is imperceptible for heuristic 

algorithm. Moreover, with p parameter growth to 

infinite, computation time of the first approach 

increased but for approximation approaches this 

criterion is decreased (Figure 5). It seems logical 

because solving the model by adding one constraint 

in exact method is much simpler than solving the 

converted objective function of two algorithms in 

infinite case of p parameter. 

2. The objective function of examples for p=1 is 

almost identical in three methods. But since 

increasing p in weighted metric methods leads to 

more realistic function for problems and heuristic 

algorithm has a near optimal solutions for p=∞, this 

method have priority over GA. 

3. To measure the speed of convergence and the 

efficiency of approximation algorithms, we use 

NFE criterion besides CT and Z. This parameter 

states that one algorithm achieved to its best 

solution by evaluating how many solution between 

 possible solutions. 

 
5. Conclusion 

In this research, a new type of location problem 

named the gravity-based equitable load problem was 

investigated. By considering the gravity model, 

realistic forecasting of customer behavior is provided, 

which also influence on the location of the facilities. 

The contributions of the paper to the literature are not 

only considering gravity model constraints but also 

integrating the equitable service and minimum 

location-allocation costs in the problem. So, an integer 

linear programming model is proposed and two 

approximation approaches are developed. The 

proposed algorithms were tested on different size of 

random instances and demonstrated that the heuristic 

algorithm provides good solutions in reasonable run 

time and with high-quality solutions for every 

dimension of the problems.  

It is a very efficient algorithm with the average gap 

about 5.21% compared with the exact solutions. 

Furthermore, calculating the least number of function 

evaluation (NFE) is another advantage even for large 

problems with up to 60 demand points.  

The algorithm is promising for practical applications to 

the public location problem. The following situations 

are suggested for future research in this field: The 

weight of the demand point can be divided among two 

or more facilities. Other equity measures such as 

minimizing the variance or the range of the total 
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demands can be considered. Developing GBELP in 

which model parameters are uncertain and have 

random distributions could enhance the validity of 

results in real-world applications.  

We suggested branch and bound methods and also 

decomposition methods like Lagrangian relaxation for 

giving good lower bounds. The proposed multi 

objective problem could be solved by multi-objective 

meta-heuristic algorithms like NSGA-II, NRGA and 

MOPSO. Finally, the most important and obvious 

suggestion is applying the model for the real-world 

problems with field studies. 

 
Tab. 4. Performance of solutions in small, medium and large instances 

    N
F

E
   

  N
F

E
   

  

P
 S

iz
e

 

In
st

a
n

c
e
s

 

  1.8598 8.5374    1.7954 0.1793 
   1.7820 0.8020 1 

10 GBELP-1 13,549 162 1.9075 8.0031 54 11,820 151 1.8540 0.1347 55 11,820 150 1.8530 3.2440 2 
  1.1711 7.3482    1.1778 0.1497    0.9890 7.0040 ∞ 

  2.9721 17.3861 
 

  2.5219 0.6741 
 

  2.2420 1.5950 1 
15 GBELP-2 

22,810 179 1.9856 16.8239 138 20,597 175 2.2229 0.6633 120 19,521 174 2.2510 6.8140 2 
  1.1283 15.9706    1.3990 0.6431    1.1320 11.9410 ∞ 

  2.8883 33.2310    2.8986 1.9455    2.7250 7.2310 1 

20 GBELP-3 28,845 161 2.8120 31.4167 
261 

25,823 157 2.7765 1.9561 
210 

24,495 156 2.7650 19.6570 2 

  1.6818 28.5003    1.9369 1.8342    1.8840 26.4530 ∞ 

  3.5407 61.2137    3.3143 4.5821    3.2500 61.9310 1 

25 GBELP-4 30,082 203 3.5036 59.9434 373 
25,478 198 3.2676 4.5028 325 

28,059 198 3.2710 79.3380 2 

  2.5510 56.8322    2.0130 4.2783    2.0560 87.1450 ∞ 

  3.9150 88.5123    3.4768 9.3033    3.3670 169.5670 1 

30 GBELP-5 33,745 271 3.5162 85.8439 497 31,119 265 3.4795 9.0185 465 29,605 265 3.4720 304.4130 2 

  2.7900 82.6055    2.4267 8.6057    2.3360 407.6490 ∞ 

  4.0115 162.8719    3.8158 16.9446    3.7880 520.2890 1 
35 GBELP-6 27,695 275 3.8620 161.4361 710 25,424 273 3.7811 16.4399 630 28,345 268 3.7630 1123.6470 2 

  2.4990 157.8572    2.2857 15.8293    2.1740 1567.5100 ∞ 

  4.5692 282.6528    4.3845 28.4880    4.3860 2773.2570 1 

40 GBELP-7 29,940 278 3.7226 274.2319 905 29,822 253 4.3983 27.6225 820 29,367 295 4.3810 4173.1550 2 

  3.4308 269.7991    2.4525 26.8862    2.1990 5711.8420 ∞ 

  4.8144 418.473    4.5737 69.0550      1   

34032 311 4.6649 411.9021 1289 32,152 309 4.4845 67.5949 1275   -  2  GBELP-8 

  3.8123 401.9937    2.6837 64.9897      ∞   

   

5.4861 594.5140    5.0872 103.1009      1   

41791 305 5.0387 587.6400 1622 40,660 291 4.8446 100.4128 1540   -  2  GBELP-9 

  3.6754 579.8032 
 

  2.9500 94.6799 
 

    ∞   

  5.9930 879.5492    5.5042 142.3376      1   

38755 360 5.4967 881.5431 1991 37,253 358 5.1603 142.3600 1830   -  2  GBELP-10 

  4.3540 870.1478    3.1923 141.5426      ∞   

  6.5438 1972.9814 
 

  5.9114 197.2155 
 

    1   

42962 365 5.8093 1966.9116 2348 41,067 361 5.6229 188.3202 2145   -  2  GBELP-11 

  4.0064 1951.1524    3.5014 184.4965      ∞   

  6.8233 2588.3285    6.1103 267.4845      1   

36771 374 6.0901 2524.6135 2695 34,396 372 5.9992 256.8318 2485   -  2  GBELP-12 

  3.9917 2498.6518    3.2200 248.8304      ∞   

  7.3126 3829.4323    6.8441 338.0422      1   

40719 440 6.2714 3754.0052 3108 41,147 425 6.1272 329.7756 2850   -  2  GBELP-13 

  4.0911 3195.7567    3.8367 331.3681      ∞   

  7.6119 5163.6731    6.9554 462.7692      1   

43197 396 6.7895 5314.6279 3546 42,468 386 6.3995 421.2400 3240   -  2  GBELP-14 

  3.9043 4907.3375    3.6808 430.4257      ∞   

  9.83%     5.21%         
 

*  indicator shows the average of total deviation in approximate value of the objective functions versus exact solution 
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.      

          
 

 

 

 

 

 

                                                                                            

Fig. 5. Comparison of CT of approaches with p=1,2,∞Figure 6. Comparison of Z of approaches with p=1,2,∞ 
 

 
Fig. 7. Comparison of NFE of Heuristic and GA 

approaches 
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