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KKEEYYWWOORRDDSS                                  ABSTRACT 
 

 

In the classical versions of “Best Choice Problem”, the sequence of 

offers is a random sample from a single known distribution. We 

present an extension of this problem in which the sequential offers are 

random variables but from multiple independent distributions. Each 

distribution function represents a class of investment or offers. Offers 

appear without any specified order. The objective is to accept the best 

offer. After observing each offer, the decision maker has to accept or 

reject it. The rejected offers cannot be recalled again. In this paper, we 

consider both cases of known and unknown parameters of the 

distribution function of the class of next offer. Two optimality criteria 

are considered, maximizing the expected value of the accepted offer or 

the probability of obtaining the best offer. We develop stochastic 

dynamic programming models for several possible problems, 

depending on the assumptions. A monotone case optimal policy for 

both criteria is proved. We also show that the optimal policy of a 

mixed sequence is similar to the one in which offers are from a single 

density. 
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11..  IInnttrroodduuccttiioonn   

In many decision situations such as an investment, 

selling an asset or seeking a job, the decision-maker 

(DM) receives a sequence of offers one at a time. After 

the evaluation of each offer, DM must decide whether 

to take the offer on hand or reject it and waiting for 

next better ones. If the decision is irrevocable, the 

question is when to make the positive decision of 

accepting an offer. If the decision is made too early in 

the search process, then DM may miss some better 

future offer. However, if it is made too late, DM may 

have already passed over the best opportunities. 
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  Paper first received April. 17. 2010 ,and in revised form August.  
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This class of sequential search and selection problems 

is variously referred to as secretary problem, the job 

search problem, candidate problem, best choice 

problem, parking spot problem, beauty contest 

problem, house-selling problem, optimal stopping 

problem. Basic assumptions of these series of 

sequential decision problems are as follows. [1]. 

1- One by one, a sample of N measurements is drawn 

from a population with continuous distribution 

function F(x). The continuity assures that the 

probability ties are 0. 

2- The total number of measurements, N, is known to 

DM a priori. 

3- After each draw, the DM, who may (or may not) 

know the distribution function F(x) and its 

parameters value, is informed of its value xj (or its 

relative rank), whereupon DM must decide whether 

or not to choose that draw. 
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4- No recall is allowed; that is, a draw once rejected 

may not be chosen later on. 

5- DM is very particular and will be satisfied with 

nothing but the very best.  

Thus, the problem is to find a rule or strategy that 

maximizes the probability of successfully choosing the 

'best choice'. Owing to Assumption 5, the sequential 

decision problem is widely referred to as the best 

choice problem. In a managerial decision situation, the 

sequentially observed random variable Xj in 

assumption 3 may represent the jth bid in the house-

selling problem, the value of the jth offer in the job 

search problem, the market price of an asset on the jth 

day, or the rate of return associated with the jth 

investment opportunity in the investment problem. 

The cumulative distribution function F(x) in 

assumptions 1 and 3 may or may not be known to DM 

a priori. Thus, depending on the assumption made on 

the distribution function F(x), the best choice problems 

can be categorized as three following cases. 

 In the no information case, on one hand, we 

assume that the distribution function F(x)  is 

completely unknown to DM and thereby the DM's 

decision is solely based on the relative rankings of 

the choices that have been observed so far. The no 

information case has been widely known as the 

secretary problem, in which an executive must 

make an irrevocable decision from a pre-specified 

number of applicants who are interviewed for a 

secretarial position. 

 In the full information case, on the other hand, we 

assume that the distribution function F(x) and its 

parameter values are fully known to DM a priori. 

In most full information cases, the sequentially 

observed variables Xj are assumed to be 

independent, identically distributed (i.i.d.) random 

observations from a common distribution, F(x). 

 An intermediate problem of partial information case 

occurs when observations are taken from a known 

distribution, but containing one or more unknown 

parameters. An appropriate approach is to use 

Bayes formula to update the estimation of its 

parameters at the same time as deciding whether to 

stop or continue the search process, [2]. 

In this paper, however, we consider a different type of 

“full information” case in which the values of offer are 

from two (or more) different known independent 

distribution, like FX(x) and FY(y). The incoming offers 

follow a random pattern in the arriving sequence. In 

this case, we prove under some assumptions the 

optimal strategy is the same as optimal stopping policy 

with just one distribution.  

Since its appearance in the literature in the early 1960s, 

the best choice problem has been extended and 

generalized in many different directions by releasing 

some of the above mentioned five basic assumptions. 

The extensions reported in the literature include the 

infinite time horizon, unknown number of applicants, 

random arrivals of applicants, partial recall of rejected 

applicants, multiple selections, possibility of rejected 

offers, selection and assignment, discounting of the 

payoff, minimizing the expected rank, partial 

information case. 

Kang [3] presents an optimal stopping problem with 

recall where a fee must be paid to accept the best offer 

which has so far appeared. 

Kawai and Tamaki [4] consider a version of the 

secretary problem in which one is allowed to make one 

choice and regard the choice as successful when the 

chosen applicant is either the best or the second best 

among all N applicants, where N is a random variable 

with known distribution. Porosinski [5] characterizes a 

class of distributions of N, for a full-information best 

choice problem with a random number of objects N for 

which the so-called monotone case occurs. 

Tamaki [6] considers an infinite version of secretary 

problem. From an infinite stream of applicants, m 

applicants should be chosen and assigned to m 

positions. 

Chun [7] considers the problem of selecting the single 

best choice when several groups of choices are 

presented sequentially for evaluation. In the group 

interview problem, he assumes that the value of 

choices is random observations from a known 

distribution function and derives the optimal search 

strategy that maximizes the probability of selecting the 

best among all choices. Chun [8] derives a simple 

selection rule called the optimal partitioning strategy in 

which the decision-maker divides the entire groups into 

two disjoint sets. After evaluating the choices in the 

first set, the relatively best available choice is chosen 

for the first time in the second set. 

Bearden et al. [9] present a generalization of secretary 

problem in which applicants are characterized by 

multiple attributes and then present a procedure for 

numerically computing the optimal search policy and 

test it in two experiments with incentive-compatible 

payoffs. Chun [1] proposes a third approach (in 

addition to dynamic programming and Markovian 

approaches) to a generalized version of the best choice 

problem, based on the theory of information 

economics. Freeman [10] and Ferguson [11] present 

excellent review papers elaborating some extensions of 

this problem. 

In this paper, we propose a novel approach that is 

based on the concept of mixture models and illustrate 

how to derive the optimal strategy for a generalized 

version of the best choice problem. 

In section 2, we formulate and obtain an optimal 

strategy for the situation that considers a mixed 

sequence of offers coming from two (or more) different 

known distributions by applying dynamic programming 

approach and assuming that that DM has prior 

information of the probability of the next offer. In 

Section 3, we relax this assumption and formulate the 

problem within dynamic programming framework 

involving learning. Section 4 deals with introducing the 

concept of mixed models and shows that mixed 
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sequences are reducible to well studied univariate 

sequences. In section 5 we illustrate our discussion. 

Finally, our results are summarized in concluding 

section.   
 

22..  AA  mmiixxeedd  SSeeqquueennccee  wwiitthh  tthhee  KKnnoowwnn  
AA::  PPrroobbaabbiilliittyy  ooff  tthhee  DDiissttrriibbuuttiioonn  

Consider an investor who has one chance to invest her 

money in different types of assets, e.g. stocks, bonds, 

real estates and etc. She does not have enough cash to 

create a portfolio of assets. Therefore, she tries to 

select the best single offer to invest.  Offers come 

sequentially in time. She doesn’t know what would be 

the type of next offer or its value. Each time, after 

receiving an offer (type and value), she can either 

accept it and invest or reject it and keep on selecting.  

More generally, consider a Decision Maker (DM) who 

receives a sequence of offers of two types (or classes). 

Each offer is a nonnegative random variable which 

comes either from distribution function X or Y. (The 

general case with more than two distributions is also 

discussed at the end of this section). Let Xj and Yj be 

the jth offer (or observation) of classes I or II (or drawn 

from distributions FX and FY ), respectively. Xjs and 

Yjs are assumed to be i.i.d. A probable sequence, for 

example, can be  X Y Y Y X X Y X … X X Y. 

Suppose DM receives N offers, where N is a prior 

information to DM. However, the number of offers 

from each class is not known in advance. Let n and m  

represent the number of offers from classes I or II, 

respectively. Then, N=n+m. Furthermore, DM knows 

that the next offer (random variable) is from 

distribution FX with a predetermined probability p and 

as a result, from distribution has FY with probability (1-

p). After observing the offer, DM becomes aware of its 

value as well as its true distribution. Then, DM can 

either accept it and terminate the process or reject it 

and keep on selecting. An offer must be selected 

finally. No recall is allowed. We formulate the problem 

to satisfy two different criteria. 
 

2.1. First Criterion: Maximizing the Expected Value 

of the Accepted Offer 

We use the following notations to formulate the 

problem in the framework of stochastic dynamic 

programming: 

Let V(k, v |Z) be the maximal expected value of the 

accepted offer if the number of remaining offers is k 

(including the present offer which has not been decided 

yet), and the class of distribution and value of the 

presented offer are Z and v, respectively. Note that Z is 

either X or Y and is known just after the offer is 

presented.  Then,  

 

𝑉 𝑘, 𝑣 𝑧 = max( 𝑉 𝑘 − 1, 𝑢 𝑋 𝑑𝐹𝑥
𝑢

 𝑢  

+(1 − 𝑝)  𝑉 𝑘 − 1, 𝑢 𝑌 𝑑𝐹𝑌𝑢
 𝑢                           (1) 

with boundary condition: V(1, v |Z) = v. 

If DM accepts this offer, he gains value v and the 

process terminates. However, if the offer is rejected, 

then he receives another offer with probability p from 

FX and with probability (1-p) from FY distribution   

 

Proposition1. The optimal policy is as follows:  

There are increasing numbers 0 ≤ 𝑎1 ≤ 𝑎2 ≤ ⋯ ≤ 𝑎𝑁 

such that if there are remaining 𝑘 offers, then accept 

the present one if its value is at least 𝑎𝑘 . 

 

Proof: The present offer is accepted if 𝑉 𝑘, 𝑣 𝑍 =
𝑣 ≥  𝑎𝑘 . Therefore, if 𝑣, the value of present offer, is at 

least 𝑎𝑘 , DM accepts it. It is obvious that for 𝑘 > 1, 

 

𝑎𝑘 = 𝑝  𝑉 𝑘 − 1, 𝑢 𝑋 𝑑𝐹𝑋 𝑢 
𝑢

 

+ 1 − 𝑝  𝑉 𝑘 − 1, 𝑢 𝑌 𝑑𝐹𝑌 𝑢 
𝑢

 

 

From the boundary condition, 𝑉 1, 𝑣 𝑍 = 𝑣, 𝑎1 is 

equal to zero. For 𝑎2:  

 

𝑎2 = 𝑝  𝑉 1, 𝑢 𝑋 𝑑𝐹𝑋 𝑢 
𝑢

+  1 − 𝑝  

 𝑉 1, 𝑣 𝑌 𝑑𝐹𝑌 𝑢 
𝑢

= 𝑝 𝑢𝑑𝐹𝑋 𝑢 
𝑢

 

+ 1 − 𝑝  𝑢𝑑𝐹𝑌 𝑢 
𝑢

= 𝑝𝐸(𝑋) +  1 − 𝑝 𝐸(𝑌) 

 

To show the sequence 𝑎1, … , 𝑎𝑁 is monotone, we use 

induction on 𝑘. It is obvious that, 

 

𝑎2 =  𝑝𝐸 𝑋 +  1 − 𝑝 𝐸 𝑌 ≥ 𝑎1 = 0.  

 

Now, let 𝑉 𝑘, 𝑣 𝑍 ≥  𝑎𝑘 ,.  then, 

 

𝑎𝑘+1 = 𝑝  𝑉 𝑘, 𝑢 𝑋 𝑑𝐹𝑋 𝑢 
𝑢

+  1 − 𝑝  

 𝑉 𝑘, 𝑢 𝑌 𝑑𝐹𝑌 𝑢 
𝑢

= p  max( u, ak
u

)dFx(u) 

+ 1 − 𝑝  𝑚𝑎𝑥  𝑢, 𝑎𝑘 𝑑𝐹𝑌 𝑢 
𝑢

+ 

 1 − 𝑝  𝑚𝑎x(𝑢, 𝑎𝑘)𝑑𝐹𝑌 𝑢 
𝑢

≥ 

𝑝  𝑎𝑘𝑑𝐹𝑋 𝑢 
𝑢

+  1 − 𝑝  𝑎𝑘𝑑𝐹𝑌 𝑢 
𝑢

 

= 𝑝𝑎𝑘 +  1 − 𝑝 𝑎𝑘 = 𝑎𝑘   

 

In case of more than two distributions (classes), the 

same result can be obtained. Suppose offers come from 

a family of 𝑞 known distribution  𝐹𝑖 𝑖=1
𝑞

, and DM 

knows that the next offer belongs to 𝐹𝑖  family with pre-

known probability 𝑝𝑖 , while  𝑝𝑖
𝑞
𝑖=1 = 1. The obtained 
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“monotone case” policy can be generalized for the 

sequences with 𝑞 distribution: 

 

 ∀𝑘, ∃𝑎𝑘 

𝑖𝑓 𝑖𝑛 𝑒𝑎𝑐𝑕 𝑠𝑡𝑎𝑔𝑒 𝑣 ≥ 𝑎𝑘 ,
𝑡𝑕𝑒𝑛 𝑐𝑕𝑜𝑜𝑠𝑒 𝑡𝑕𝑒 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑜𝑓𝑓𝑒𝑟 

𝑎𝑛𝑑 𝑠𝑡𝑜𝑝,
𝑒𝑙𝑠𝑒 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒

  

 

where, 

 

  𝑎𝑘 =  𝑝𝑖  𝑉 𝑘 − 1, 𝑣 𝑍𝑖 𝐹𝑍𝑖
(𝑢)

𝑢

𝑞
𝑖=1                       (2) 

 

It is obvious that in this situation the maximal expected 

value in stage 𝑘 would be: 

 
 𝑉 𝑘, 𝑣 𝑍 =

𝑚𝑎𝑥  𝑣,  𝑝𝑖  𝑉 𝑘 − 1, 𝑣 𝑍𝑖 𝐹𝑍𝑖
(𝑢)

𝑢

𝑞
𝑖=1                   (3) 

 
B: Second Criterion: Maximizing the Probability of 

Obtaining the Best Offer 

Suppose DM wants to maximize the probability of 

acquiring the best offer, instead of maximizing its 

expected value, under the same assumptions of the 

previous section. To formulate this problem, extra 

information needed tob included in the state vector. By 

our notation vm
Z ′

 indicates the value (m) as well as the 

distribution (Z′) of the best unaccepted previous offer.  

In bivariate sequences, Z′ is either X or Y. 

Let Ψ k, v, vm
Z ′
 Z  denote the maximal probability of 

obtaining the best offer when the value and distribution 

of the present offer are  m and FZ , respectively and the 

number of remaining offers is k.  

There are two possible situation:  v < vm
Z ′

  or v ≥ vm
Z ′

. 

 

𝛹 𝑘, 𝑣, 𝑣𝑚
𝑍 ′
 𝑍 = 

 

 
 
 

 
 

reject the present offer and continue  

with the next offer                                       𝑣 < 𝑣𝑚
𝑍 ′

 

𝑚𝑎𝑥  
accept the present offer and 

it is the best offer,
 reject it and continue

   𝑣 ≥ 𝑣𝑚
𝑍 ′

           (4-a) 

 

Let 𝑃𝐴𝐵 𝑣  denote the expected probability that the 

present offer is the best one, when 𝑣 ≥ 𝑣𝑚
𝑍 ′

.Then, by 

conditioning on the number of remaining offer with 𝐹𝑋  

distribution. 

 

𝑃𝐴𝐵 𝑣 = 

 𝑃𝐴𝐵  𝑣|
𝑖 offers come from 𝐹𝑋   and 

𝑘 − 1 − 𝑖 offers come from 𝐹𝑦)    
 𝑘−1

𝑖=0     (4-b) 

 

Hence, 

 

𝑃𝐴𝐵 𝑣 = 

  𝑘−1
𝑖

 𝑝𝑖 1 − 𝑝 𝑘−1−𝑖𝑘−1
𝑖=0  𝐹𝑋 𝑣 𝑖𝐹𝑌 𝑣 𝑘−1−𝑖         (4-c) 

Finally, we have, 

 

𝛹 𝑘, 𝑣, 𝑣𝑚
𝑍 ′
 𝑍 = 

  

 
 
 
 

 
 
 𝑝  𝛹 𝑘 − 1, 𝑢, 𝑣𝑚

𝑍 ′
 𝑋 𝑑𝐹𝑋 𝑢 

𝑢
+

 1 − 𝑝  𝛹 𝑘 − 1, 𝑢, 𝑣𝑚
𝑍 ′
 𝑌 𝑑𝐹𝑌 𝑢 

𝑢
                            , 𝑣 < 𝑣𝑚

𝑍 ′
 

𝑚𝑎𝑥

 

 
 

  𝑘−1
𝑖

 𝑝𝑖 1 − 𝑝 𝑘−1−𝑖𝑘−1
𝑖=0 𝐹𝑋 𝑣 𝑖𝐹𝑌 𝑣 𝑘−1−𝑖 ,

𝑝  𝛹 𝑘 − 1, 𝑢, 𝑣 𝑋 𝑑𝐹𝑋 𝑢 
𝑢

+

 1 − 𝑝  𝛹 𝑘 − 1, 𝑢, 𝑣 𝑌 𝑑𝐹𝑌 𝑢 
𝑢  

 
 

 , 𝑣 ≥ 𝑣𝑚
𝑍 ′

     (5) 

 
When considering a general sequence with more than two 

distributions, the formulation would be:  

 
𝛹 𝑘, 𝑣, 𝑣𝑚

𝑍 ′
 𝑍      = 

 
 
 
 
 
 

 
 
 
 
 

  𝑝𝑖  𝛹 𝑘 − 1, 𝑢, 𝑣𝑚
𝑍 ′
 𝑍𝑖 𝑑𝐹𝑍𝑖

 𝑢 
𝑢

q

i=1

                  , 𝑣 < 𝑣𝑚
𝑍 ′

                                                                                                                       

𝑚𝑎𝑥

 

 
 
 
     

𝑘 − 1

𝑖1, … , 𝑖𝑞
  [𝑝𝑘𝐹𝑍𝑘

(𝑣)]𝑖𝑘

𝑞

𝑘=1

𝑘−1− 𝑖𝑗
𝑞−1
𝑗=1

𝑖𝑞−1

𝑘−1−𝑖1

𝑖2

𝑘−1

𝑖1

,

 𝑝𝑖  𝛹 𝑘 − 1, 𝑢, 𝑣 𝑍𝑖 𝑑𝐹𝑍𝑖
 𝑢 

𝑢

q

i=1  

 
 
 
 

, 𝑣 ≥ 𝑣𝑚
𝑍 ′

 

 

 (6) 

 
with boundary condition:  

 

𝛹 1, 𝑣, 𝑣𝑚
𝑍 ′
 𝑍 =  0    𝑣 < 𝑣𝑚

𝑍 ′

1          else
 .                                  (7) 

 

Proposition 2. The optimal policy has the following 

form:  

At each stage, say 𝑘, if the present offer is not as high 

as the value of the best of previous ones, i.e. .𝑣 < 𝑣𝑚
𝑍 ′

), 

reject it and continue. Otherwise, accept this offer and 

terminate the process if 𝑣 ≥ 𝑠𝑘 , where 𝑠𝑘  is a 

predetermined number. 

Proof: It is obvious that when 𝑣 < 𝑣𝑚
𝑍 ′

, DM does not 

accept the offer because this offer is not the best one.  

For the case 𝑣 ≥ 𝑣𝑚
𝑍 ′

, let 

𝐸𝐶 𝑣 =  𝑝𝑖  𝛹 𝑘 − 1, 𝑢, 𝑣 𝑍𝑖 𝑑𝐹𝑍𝑖
 𝑢 

𝑢

q
i=1 , 

indicate the expected probability of obtaining the best 

offer when DM should proceed. On the other hand, 

PAB(v) is an increasing function of v, defined as 

follows. 

 

PAB  v =   …   
k − 1

i1, … , iq
  [pkFZk

(v)]ik

q

k=1

k−1− ij
q−1
j=1

iq−1

k−1−i1

i2

k−1

i1

 

 

The reason is that it is a polynomial function of 

FZk
(v)ik  which is obviously increasing in v. 

Furthermore, it can be proved by induction on k that 

EC(v) is a decreasing1 function of  v , see Appendix A. 

                                                 
1 Throughout this paper, decreasing means not increasing. 
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It is easy to comprehend why EC(v) is decreasing. As 

much as the value of the present offer, v , increases, 

finding one offer with higher value than v becomes less 

likely.  

The higher the value of the present offer makes it less 

probable to obtain “the best offer” among next ones. 

Therefore, EC(v)  must decrease in v. 

The boundary conditions are: 

𝑃𝐴𝐵 0 = 0, 𝑃𝐴𝐵 𝑣 𝑣→∞ = 1, 𝐸𝐶 𝑣 𝑣→0 = 𝛥 > 0, and  

𝐸𝐶 𝑣 𝑣→∞ = 0. (Note that 𝐸𝐶 𝑣  and 𝑃𝐴𝐵 𝑣  are 

defined on the domain [𝑣𝑚
𝑍 ′

, ∞], but because it is easier 

to compare them on the boundary , we consider the 

dummy boundary  and then reconsider 𝑣𝑚
𝑍 ′

). 
 

 

 

    

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 1. Accepting and rejecting areas 

 

Figure 1 show the existance of 𝑠𝑘 . If 𝑃𝐴𝐵 𝑣  and 

𝐸𝐶(𝑣) intersect in a value greater than 𝑣𝑚
𝑍 ′

, with values 

higher than 𝑠𝑘 , 𝑃𝐴𝐵 𝑣  is higher than 𝐸𝐶(𝑣), i.e. it is 

the time to accept the offer.  

 
3. A Practical Case; Mixed Sequences with 

Bayesian Updates 
In previous situations, from DM viewpoint, the random 

variable that determines the class of next offer is 

Bernoulli (for bivariate sequence) or polynomial (for 

multivariate sequence).  

This random variable was assumed to be completely 

known to DM, i.e. he knows p or pi. However, in real 

world this is not always true. Consider the case of 

investor mentioned in Section 2. If this investor doesn’t 

know what would be the class of next offer and with 

what probability, then she can only say that different 

offers come with an order of polynomial distribution 

with unknown parameters.  

At the beginning, this investor can put equal chances 

for the next offer to be from any class of assets (or 

distributions). However, as the offers come, investor 

can have a better image of the next ones, i.e. she can 

update the chances based on the previous offers of 

different class of assets that have been observed so far. 

This problem can be formulated within the framework 

of stochastic dynamic programming involving learning.  
 

Lemma1. Let p be an unknown parameter of a 

Bernoulli distribution which is determined by sampling 

a uniform distribution. If 𝑘 and 𝑙 are the number of 

independent experiment and successful outputs up to 

this point respectively, then, its expected value is 

𝑝 =
𝑙+1

𝑘+2
.   

 

Proof. We can compute 𝑓(𝑥 𝑘, 𝑙) , the posterior density 

of 𝑝, by Bayes’ law: 
 

𝑓(𝑥 𝑘, 𝑙) =
𝑔(𝑘, 𝑙 𝑥)𝑓(𝑥)  

𝑔 𝑘, 𝑙 
=

𝑥𝑙 1 − 𝑥 𝑘−𝑙𝑓(𝑥)

 𝑧𝑙 1 − 𝑧 𝑘−𝑙1

0
𝑓 𝑧 𝑑𝑧

 

 

where 𝑔 𝑘, 𝑙  is the probability of obtaining 𝑙 successes 

from 𝑘 independent Bernoulli experiments. Then,  
 

𝑝 =  𝑥𝑓(𝑥 𝑘, 𝑙) 𝑑𝑥
1

0

=
 𝑥𝑙+1 1 − 𝑥 𝑘−𝑙𝑓(𝑥)

1

0

 𝑧𝑙 1 − 𝑧 𝑘−𝑙1

0
𝑓 𝑧 𝑑𝑧

=
𝑙 + 1

𝑘 + 2
.  

 

Consider a bivariate sequence. Let the number of offers 

from 𝐹𝑥  and 𝐹𝑦  distributions up to this point (including 

the present one) be 𝑆𝑥  and 𝑆𝑦 , respectively. Then, by 

Lemma 1, 𝑝 =  
𝑺𝒙+𝟏

𝑺𝒙+𝑺𝒚+𝟐
. Let 𝑉 𝑆𝑥 , 𝑆𝑦 , 𝑣 𝑍   and 

𝛹 𝑆𝑥 , 𝑆𝑦 , 𝑣, 𝑣𝑚
𝑍 ′

 𝑍  denote the maximal expected value 

and maximal expected probability of accepting the best 

offer, respectively. Then,  

 

𝑉 𝑆𝑥 , 𝑆𝑦 , 𝑣 𝑍  = 𝑚𝑎𝑥

 

 
 

𝑣,
𝑆𝑥 + 1

𝑆𝑥 + 𝑆𝑦 + 2
 𝑉 𝑆𝑥 + 1, 𝑆𝑦 , 𝑢 𝑋  𝑑𝐹𝑥 𝑢 
𝑢

+

𝑆𝑦 + 1

𝑆𝑥 + 𝑆𝑦 + 2
 𝑉 𝑆𝑥 , 𝑆𝑦 + 1, 𝑢 𝑌  𝑑𝐹𝑦 𝑢 
𝑢  

 
 

 

 

with boundary conditions:  
 

𝑉 𝑆𝑥 , 𝑁 − 𝑆𝑥 , 𝑣 𝑍  = 𝑉 𝑁 − 𝑆𝑦 , 𝑆𝑦 , 𝑣 𝑍  = 𝑣  
 

and 

𝛹 𝑆𝑥 , 𝑆𝑦 , 𝑣, 𝑣𝑚
𝑍 ′
 𝑍 =

 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

𝑆𝑥 +1

𝑆𝑥 +𝑆𝑦 +2
 𝛹 𝑆𝑥 + 1, 𝑆𝑦 , 𝑢, 𝑣𝑚

𝑍 ′
 𝑋 𝑑𝐹𝑋 𝑢 

𝑢
+

𝑆𝑦 +1

𝑆𝑥 +𝑆𝑦 +2
 𝛹 𝑆𝑥 , 𝑆𝑦 + 1, 𝑢, 𝑣𝑚

𝑍 ′
 𝑌 𝑑𝐹𝑌 𝑢 

𝑢
 

, 𝑣 < 𝑣𝑚
𝑍 ′

max

 

 
 
 
 
 
 

  
𝑁−(𝑆𝑥 +𝑆𝑦 )

𝑘
 

𝑁− 𝑆𝑥 +𝑆𝑦  

𝑘=0  
𝑆𝑥 +1

𝑆𝑥 +𝑆𝑦 +2
 

𝑘

×

 
𝑆𝑦 +1

𝑆𝑥 +𝑆𝑦 +2
 

𝑁− 𝑆𝑥 +𝑆𝑦  −𝑘

𝐹𝑋 𝑣 𝑘𝐹𝑌 𝑣 𝑁− 𝑆𝑥 +𝑆𝑦  −𝑘 ,

𝑆𝑥 +1

𝑆𝑥 +𝑆𝑦 +2
 𝛹 𝑆𝑥 + 1, 𝑆𝑦 , 𝑢, 𝑣 𝑋 𝑑𝐹𝑋 𝑢 
𝑢

+

𝑆𝑦 +1

𝑆𝑥 +𝑆𝑦 +2
 𝛹 𝑆𝑥 + 1, 𝑆𝑦 , 𝑢, 𝑣 𝑌 𝑑𝐹𝑌 𝑢 
𝑢  

 
 
 
 
 
 

, 𝑣 ≥ 𝑣𝑚
𝑍 ′

      (8) 

 

with boundary conditions: 
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𝛹 𝑆𝑥 , 𝑁 − 𝑆𝑥 , 𝑣, 𝑣𝑚
𝑍 ′
 𝑍 = 𝛹 𝑁 − 𝑆𝑦 , 𝑆𝑦 , 𝑣, 𝑣𝑚

𝑍 ′
 𝑍 =

 
0     𝑣 < 𝑣𝑚

𝑍 ′
 

1     𝑣 ≥ 𝑣𝑚
𝑍 ′

 
   

 

4. Mixed Sequence Models 
Mixture distributions comprise a finite or infinite 

number of components, possibly of different 

distributional types, that can describe different features 

of data. They, thus facilitate much more careful 

description of complex systems, as evidenced by the 

enthusiasm with which they have been adopted in such 

diverse areas such as astronomy, ecology, 

bioinformatics, computer science, ecology, economics, 

engineering, robotics and biostatistics. For instance, in 

genetics, location of quantitative traits on a 

chromosome and interpretation of microarrays both 

relate to mixtures, while, in computer science, spam 

filters and web context analysis start from a mixture 

assumption to distinguish spams from regular emails 

and group pages by topic, respectively [12]. 

 
4.1. The Finite Mixture Framework 

Definition 1. A mixture of distributions is any convex 

combination of them, i.e., 
 

 pifYi
(x)k

i=1 ,  pi
k
i=1 = 1, pi ≥ 0, k > 1              (9-a) 

 
In the parametric mixture model, the component 

distributions are from a parametric family, with 

unknown parameters 𝜃𝑖 : 

 
 fX x =  pifY(x;n

i=1 θi)                                             (9-b) 

 
A continuous mixture is defined similarly:  

 

fX x =  h(
θ

θfY x; θ dθ                                           (9-c) 

where 𝑕 𝜃 ≥ 0,    ∀𝜃 ∈ 𝜣 and  𝑕(
𝜃

𝜃)𝑑𝜃 = 1. 

 
 

 

 

                               

 

 

 

 

 

 

 

 

 

 
Fig. 2. Decision making model for DM, bivariate 

sequence 

Now we can relate the mixed sequence of offers to the 

concept of mixture density. Consider the case 

introduced in section 2, when encountering a new 

offer, DM situation can be shown as in Figure 2.   

It means that DM does not know from which 

distribution offers come, but he can imagine that offers 

are coming from a mixture of 𝑋 and 𝑌, see Figure 1. 

The mixture variable, 𝑍, has the following density:  

 

𝑓𝑍 𝜁 = 𝑝𝑓𝑋 𝜁 +  1 − 𝑝 𝑓𝑌 𝜁        𝜁 > 0 

 

Or 

 

𝐹𝑍 𝜁 = 𝑝𝐹𝑋 𝜁 +  1 − 𝑝 𝐹𝑌 𝜁        𝜁 > 0 

 

Therefore, we can replace the model in Figure 3 with 

the following one: 
  

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.  Decision making model for DM after 

reducing to a mixed model 

 
DM can assume that offers come from a single known 

distribution, namely FZ , see Figure 3. But this reduced 

problem is not a new one. Gilbert and Mosteller [13] 

obtained the optimality policy structure of the maximal 

value-objective and maximal probability-objective 

cases, respectively. 

In fact, when offers come from a unique distribution Z, 

then the stochastic dynamic programming formulation 

for the previous two mentioned objectives are: 

i. maximal value-objective: 

 
 𝑉(𝑘, 𝑣) = max  𝑣,  𝑉 𝑘 − 1, 𝑢 𝑑𝐹𝑍 𝑢 

𝑢
                       (10) 

 
with boundary condition: 𝑉(1, 𝑣) = 𝑣. 

ii. maximal probability-objective: 

 
 𝛹 𝑘, 𝑣, 𝑣𝑚 =

 
  𝛹 𝑘 − 1, 𝑢, 𝑣𝑚 𝑑𝐹𝑍 𝑢 

𝑢
,                         𝑣 < 𝑣𝑚

𝑚𝑎𝑥(𝐹𝑍 𝑣 𝑘−1,  𝛹(𝑘 − 1, 𝑢, 𝑣)𝑑𝐹𝑍 𝑢 )
𝑢

, 𝑣 ≥ 𝑣𝑚   

    (11) 

 
with boundary condition: 𝛹 1, 𝑣, 𝑣𝑚 = 1. 

X Y 

DM 

p 1-p 

X 

Y 

… 

Y 

Y 

X 

Z 

Z 

… 

Z 

Z 

Z 

DM 
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Optimal policy in the framework of mixture models 

Consider a multivariate sequence of offers from 𝑞 

positive independent random variables  𝑍𝑖 𝑖=1
𝑞

 with 

distributions  𝐹𝑖 𝑖=1
𝑞

. At each stage, one offer is 

presented to DM and he must decide either to accept it 

and terminates the process or to reject it. After the offer 

is presented, DM can observe its value as well as its 

distribution.  

DM can have prior information regarding the 

probability of the family (or distribution) of the next 

offer or not.  

If DM does not have the exact value of this probability, 

he can estimate it, as discussed before. The optimal 

policy for this situation is exactly like the optimal 

policy when offers come from just one distribution and 

its equivalent distribution is 𝐹𝑍 𝜁 =   𝑝𝑖𝐹𝑍𝑖
 𝜁 

𝑞
𝑖=1 (𝜁 >

0). (𝑝𝑖  is the exact value of predetermined probability 

or its estimation.  

For example in section 3, for 𝑖 = 2, 𝑝𝑖 = 𝑝2 = 
𝑆𝑥+1

𝑆𝑥+𝑆𝑦 +2
). 

For the case considered in section 3, DM decides to 

continue: 1) when 𝑣 < 𝑣𝑚
𝑍 ′

 and 2) when 𝑣 ≥ 𝑣𝑚
𝑍 ′

 and  

𝑆𝑥 + 1

𝑆𝑥 + 𝑆𝑦 + 2
 𝛹 𝑆𝑥 + 1, 𝑆𝑦 , 𝑢, 𝑣 𝑋 𝑑𝐹𝑋 𝑢 
𝑢

 

 

+
𝑆𝑦 + 1

𝑆𝑥 + 𝑆𝑦 + 2
 𝛹 𝑆𝑥 + 1, 𝑆𝑦 , 𝑢, 𝑣 𝑌 𝑑𝐹𝑌 𝑢 
𝑢

 

 
takes a greater value than 

 

  
𝑁 − (𝑆𝑥 + 𝑆𝑦)

𝑘
 

𝑁− 𝑆𝑥 +𝑆𝑦  

𝑘=0
 

𝑆𝑥 + 1

𝑆𝑥 + 𝑆𝑦 + 2
 

𝑘

 
𝑆𝑦 + 1

𝑆𝑥 + 𝑆𝑦 + 2
 

𝑁− 𝑆𝑥 +𝑆𝑦  −𝑘

 

× 𝐹𝑋 𝑣 𝑘𝐹𝑌 𝑣 𝑁− 𝑆𝑥+𝑆𝑦  −𝑘  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.  Decision making model, bivariate sequence, 

involving learning 

𝐹𝑍 𝜁 =
𝑆𝑥 + 1

𝑆𝑥 + 𝑆𝑦 + 2
𝐹𝑋 𝜁 + 

 1 −
𝑆𝑥 + 1

𝑆𝑥 + 𝑆𝑦 + 2
 𝐹𝑌 𝜁   ( 𝜁 > 0) 

 

i.e. there is a mixed density from which offers come. 

When DM decides to accept the offer, the maximal 

expected probability of obtaining the best offer is 

 
𝑃𝐴𝐵 𝑣 

=   
𝑁 − (𝑆𝑥 + 𝑆𝑦)

𝑘
 

𝑁− 𝑆𝑥+𝑆𝑦  

𝑘=0
 

𝑆𝑥 + 1

𝑆𝑥 + 𝑆𝑦 + 2
 

𝑘

 
𝑆𝑦 + 1

𝑆𝑥 + 𝑆𝑦 + 2
 

𝑁− 𝑆𝑥+𝑆𝑦  −𝑘

 

× 𝐹𝑋 𝑣 𝑘𝐹𝑌 𝑣 𝑁− 𝑆𝑥+𝑆𝑦  −𝑘 . 
 

But, 𝑃𝐴𝐵 𝑣  is just the binomial expansion of the 

expression 

 

 (
𝑆𝑥+1

𝑆𝑥+𝑆𝑦 +2
)𝐹𝑋 𝜁 +  1 −

𝑆𝑥+1

𝑆𝑥+𝑆𝑦 +2
 𝐹𝑌 𝜁  

𝑁− 𝑆𝑥+𝑆𝑦  

    

 

or in our notation 𝐹𝑍(𝑣)𝑁− 𝑆𝑥+𝑆𝑦  . Therefore, if the 

offers come from a 𝐹𝑍 distribution, 𝑣 ≥ 𝑣𝑚
𝑍 ′

, and DM 

accepts the present offer, 𝑃𝐴𝐵 𝑣 = 𝐹𝑍(𝑣)𝑁− 𝑆𝑥+𝑆𝑦   

shows the probability that this offer will have a higher 

value than those of 𝑁 −  𝑆𝑥 + 𝑆𝑦  remaining ones.  

 
5. Results 

In this section, we illustrate our results by presenting 

an example. Consider an investor who wants to invest 

in one of the 20 opportunities which occur sequentially 

in future. She knows the offers are either for real estate 

or precious metals. The value of an offer is a random 

variable with negative exponential distribution with 

mean 𝜃1=10 for real estate offers and 𝜃2=12 for 

precious metals offers. Therefore,  

𝑓𝑋 𝑥 =
1

10
𝑒−

𝑥

10    ( 𝑥 > 0)  
 

And 
 

 𝑓𝑌 𝑦 =
1

12
𝑒−

𝑦

12    (𝑦 > 0). 
 

Her broker estimates that 80 percent of the 

opportunities are for real estate, based on previous 

experiences. 

As we discussed in section 2, in each stage of decision 

making, she should accept the present offer if the value 

of offer is greater than, 
 

𝑎𝑘 = 0.8  𝑉 𝑘 − 1, 𝑢 𝑋 𝑑𝐹𝑋 𝑢 
𝑢

+ 

0.2  𝑉 𝑘 − 1, 𝑢 𝑌 𝑑𝐹𝑌 𝑢 
𝑢

 

= 0.08  𝑉 𝑘 − 1, 𝑢 𝑋 𝑒−
𝑢

10

𝑢

𝑑𝑢 

X 

Y 

… 

Y 

Y 

X 

X Y 

DM 

𝑆𝑥 + 1

𝑆𝑥 + 𝑆𝑦 + 2
 

𝑆𝑦 + 1

𝑆𝑥 + 𝑆𝑦 + 2
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+0.017  𝑉 𝑘 − 1, 𝑢 𝑌 𝑒−
𝑢

12

𝑢

𝑑𝑢 

 

Therefore, at each stage (arrival of a new offer), she 

should compare the value of the offer to 𝑎𝑘 . The 

following procedure summarizes our discussion about 

the optimal policy in 3 last stages of the this example.  

 

The Procedure of the Optimal Policy for Bivariate 

Sequence in 3 Last Tags 

 

Satge 1, 𝒂𝟏 = 0,  

Action: For each value 𝑣, accept the offer. 

 

Satge 2, 𝒂𝟐 = 0.8𝐸 𝑋 + 0.2𝐸 𝑌 = 10.4 

Action: If 𝑣 ≥ 10.4 accept the offer, else proceed. 

 

Satge 3,  

𝑎3 =0.8 max  {𝑢, 10.4}𝑒−0.1𝑢
𝑢

du 

0.2 max  {𝑢, 10.4}𝑒−
𝑢

12
𝑢

du=146.7 

 
Action: If  𝑣 ≥ 146.7 accept the offer, else proceed. 

 
 

 

 

 

 

 

 

 

 

 

Fig. 5. Generating a mixed sequence from two 

components 

This situation is similar to one in which offers have the 

following mixed density: 

 
𝑓𝑍 𝜁 = 0.8𝑓𝑋 𝜁 + 0.2𝑓𝑌 𝜁 = 

8

100
𝑒−

𝜁
10 +

2

120
𝑒−

𝜁
12       𝜁 > 0 

 

For this univarite sequence, at each stage, DM should 

compare the value of present offer with a boundary 

number bk  that is,  

 

𝑏𝑘 =  𝑉 𝑘 − 1, 𝑢 (
8

100
𝑒−

𝑢

10 +
2

120
𝑒−

𝑢

12
𝑢

)𝑑𝑢  

 

At stage k, if v is greater than bk, the investor should 

accept the offer, else, try the next opportunity. The two 

important results that can be inferred from the 

discussion are: 

1) For all value of k, bk,= ak.  

2) DM’s knowledge about the distribution of the 

present offer doesn’t affect her optimal policy. 

Concluding Remarks and Further Researches 

“Best choice problem or secretary problem” had been 

exposed to many research experiences to make its 

assumptions more compatible with real world 

observations. This particular field of study has 

experienced rapid growth and extensive application to 

a variety of decision problems. In this paper, we 

showed that under some assumptions, DM’s optimal 

policy is irrelevant to the existing of two or more 

distributions in the upcoming sequence. In other words, 

DM is indifferent to the distinct classes of offers and 

considers them under a unit framework. Now, the 

question is how the different families of offers can 

affect DM’s decisions. The probable solution may be 

hidden under the chronological order of revealing the 

distribution of the next offer. This is the subject of our 

next works.  

 

Appendix A 

𝐸𝐶 𝑣 =  𝑝𝑖  𝛹 𝑘 − 1, 𝑢, 𝑣 𝑍𝑖 𝑑𝐹𝑍𝑖
 𝑢 

𝑢

q
i=1  is a 

decreasing function of 𝒗. 

 
Lemma2. 𝑔(𝑅, 𝑥) is a real function of 𝑅 and 𝑥; 

𝐺 𝑅 =  𝑔(𝑥, 𝑅)𝑑𝑥
𝑏

𝑎
 is decreasing function of 𝑅, if 

𝑔(𝑥, 𝑅) has the same property. 

 
Proof:  

𝜕𝐺 𝑅 

𝜕𝑅
=

𝜕  𝑔(𝑥, 𝑅)𝑑𝑥
𝑏

𝑎

𝜕𝑅
=  

𝜕𝑔(𝑥, 𝑅)

𝜕𝑅

𝑏

𝑎

𝑑𝑥 

 

If for each value of 𝑥,  𝑔(𝑥, 𝑅) decreases in 𝑅 

(
𝜕𝑔 (𝑥 ,𝑅)

𝜕𝑅
≤ 0, ∀𝑥 ), then  

 
𝜕𝑔(𝑥, 𝑅)

𝜕𝑅

𝑏

𝑎

𝑑𝑥 ≤ 0  
𝜕𝐺 𝑅 

𝜕𝑅
≤ 0  𝐺 𝑅   

is decreasing in 𝑅.  
Therefore, it is sufficient to show that 𝛹 𝑘 − 1, 𝑢, 𝑣 𝑍𝑖  is 

a decreasing function of 𝑣 (Here, 

𝐺 =  𝛹 𝑘 − 1, 𝑢, 𝑣 𝑍𝑖  𝑑𝐹𝑍𝑖
 𝑢 

𝑢
 and 𝑔 = 𝛹 𝑘 − 1, 𝑢, 𝑣 𝑍𝑖 ).  

For 𝑘 = 1, the result follows. Suppose for 

Then,       

 
𝛹 𝑛 = 𝑘, 𝑢, 𝑣 𝑍𝑖                          

=

 
 
 
 
 
 

 
 
 
 
 

  𝑝𝑗  𝛹 𝑘 − 1, 𝑢′, 𝑣 𝑍𝑗  𝑑𝐹𝑍𝑗
 𝑢′ 

𝑢′

,

q

j=1

                                𝑢 < 𝑣

𝑚𝑎𝑥

 

 
 
 
     

𝑘 − 1

𝑖1, … , 𝑖𝑞
  [𝑝𝑘𝐹𝑍𝑘

(𝑢)]𝑖𝑘

𝑞

𝑘=1

𝑘−1− 𝑖𝑗
𝑞−1
𝑗=1

𝑖𝑞−1

𝑘−1−𝑖1

𝑖2

𝑘−1

𝑖1

,

 𝑝𝑗  𝛹 𝑘 − 1, 𝑢′, 𝑢 𝑍𝑖 𝑑𝐹𝑍𝑗
 𝑢′ 

𝑢

q

j=1  

 
 
 
 

, 𝑢 ≥ 𝑣  

  

 

where𝑢 ≥ 𝑣,  

𝑚𝑎𝑥  
  …  𝑘−1

𝑖1 ,…,𝑖𝑞
  [𝑝𝑘𝐹𝑍𝑘

(𝑢)]𝑖𝑘
𝑞
𝑘=1

𝑘−1− 𝑖𝑗
𝑞−1
𝑗=1

𝑖𝑞−1

𝑘−1−𝑖1
𝑖2

𝑘−1
𝑖1

,

 𝑝𝑗  𝛹 𝑘 − 1, 𝑢′, 𝑢 𝑍𝑖 𝑑𝐹𝑍𝑗
 𝑢′ 

𝑢

q
j=1

   

Mixe

d 
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is a constant function in 𝑣. when 𝑣 increases until 

𝑢 < 𝑣,  

𝛹 𝑘, 𝑢, 𝑣 𝑍𝑖 =  𝑝𝑗  𝛹 𝑘 − 1, 𝑢′, 𝑣 𝑍𝑗  𝑑𝐹𝑍𝑗
 𝑢′ 

𝑢′

q
j=1  

but according to induction hypothesis,  

 𝑝𝑗  𝛹 𝑘 − 1, 𝑢′, 𝑣 𝑍𝑗  𝑑𝐹𝑍𝑗
 𝑢′ 

𝑢′

q
j=1  decreases in 𝑣, 

so the result follows. 
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